RMS:均方根值,RMSE:均方根误差,MSE:标准差
、均方根值(RMS),有时也称方均根、效值。英语写为:Root
Mean Square(RMS).
美国传统词典的定义为:The square root of the average of squares of a set of numbers.
即:将N个项的平方和除以N后开平方的结果,即均方根的结果。 #include <iostream>#include "math.h"using namespace std; double calcRMS(double* Data, int Num){ double fSum = ; for (int i = ; i < Num; ++i) { fSum += Data[i] * Data[i]; } return sqrt(fSum/Num);} int main(){ double data[] = {, , , , , , , , , }; double a = calcRMS(data, ); cout << "the rms of data is:" << a << endl; return ;} 、均方根误差,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。均方根误差,当对某一量进行甚多次的测量时,取这一测量列真误差的均方根差(真误差平方的算术平均值再开方),称为标准偏差,以σ表示。σ反映了测量数据偏离真实值的程度,σ越小,表示测量精度越高,因此可用σ作为评定这一测量过程精度的标准。 double calcRMSE(double* Data,double *Data2,int Num){ double fSum = ; for (int i = ; i < Num; ++i) { fSum += (Data[i] - Data2[i]) *(Data[i] - Data2[i]); } return sqrt(fSum / Num);}int main(){ double dataReal[] = {, , , , , , , , , }; double dataCheck[] = { 1.02, 2.1, 2.95, 3.98,5.1, 6.05, 7.1, 7.95, 8.98, 10.1 }; double a = calcRMSE(dataReal,dataCheck,); cout << "the rmse of dataREAL and check is:" << a << endl; return ;}
、标准差(Standard Deviation),标准差是方差的算术平方根,也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示,标准差能反映一个数据集的离散程度。 double calcMSR(double* DataR,double *DataC,int Num){ double fSum = ; double meanValue = ; for (int i = ; i < Num; ++i) { meanValue += DataR[i]; } meanValue = meanValue / Num; for (int i = ; i < Num; ++i) { fSum += (DataC[i] - meanValue) *(DataC[i] - meanValue); } return sqrt(fSum / Num); //MSR}
---------------------
RMS:均方根值,RMSE:均方根误差,MSE:标准差的更多相关文章
- MATLAB 均方根误差MSE、两图像的信噪比SNR、峰值信噪比PSNR、结构相似性SSIM
今天的作业是求两幅图像的MSE.SNR.PSNR.SSIM.代码如下: clc; close all; X = imread('q1.tif');% 读取图像 Y=imread('q2.tif'); ...
- RMSE均方根误差学习笔记
1.均方根误差,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方 ...
- rmse均方根误差
rmse=sqrt(sum((w-r).^2)/length(w))
- 【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后 ...
- SSE,MSE,RMSE,R-square指标讲解
SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
- SSE,MSE,RMSE,R-square 指标讲解
SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
- Data Mining: SSE,MSE,RMSE,R-square指标讲解
转载自:http://blog.csdn.net/l18930738887/article/details/50629409 SSE(和方差.误差平方和):The sum of squares due ...
- Python机器学习笔记:常用评估指标的用法
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法 ...
- 机器学习入门实战——基于knn的airbnb房租预测
数据读取 import pandas as pd features=['accommodates','bathrooms','bedrooms','beds','price','minimum_nig ...
随机推荐
- Android开发之拍照功能实现
参考链接:http://www.linuxidc.com/Linux/2013-11/92892p3.htm 原文链接:http://blog.csdn.net/tangcheng_ok/articl ...
- Jenkins 定时 构建项目
选择要定时构建的 项目-->配置-->构建触发器 触发项目: Poll SCM:定时检查源码变更(根据SCM软件的版本号),如果有更新就checkout最新code下来,然后执行构建动作. ...
- 解析MYsql写的表达式
今天遇到个问题,Sql中直接写的是复杂表达式,如何解析呢? round(((0.00579049505+0.00006600324*JING_JIE^2*SHU_GAO-0.00000046921*J ...
- python从TXT创建PDF文件——reportlab
使用reportlab创建PDF文件电子书一般都是txt格式的,某些电子阅读器不能读取txt的文档,如DPT-RP1.因此本文从使用python实现txt到pdf的转换,并且支持生成目录,目录能够生成 ...
- 关于计算文字显示占用画面大小(System.Drawing.Graphics.MeasureString)
最近遇到了一个需要手动为显示文字换行的场合,网上转了一圈,最后形成了下面的代码: var font = new Font("微软雅黑", 9F); - DETAIL_BASE_IN ...
- Keras学习基础(2)
目录: Keras的模块结构 数据预处理 模型 网络层 网络配置 Keras中的数据处理 文本预处理 序列预处理 图像预处理 Keras中的模型 Sequential顺序模型 Model模型[通用模型 ...
- PHP利用Mysql锁解决高并发
前面写过利用文件锁来处理高并发的问题的,现在我们说另外一个处理方式,利用Mysql的锁来解决高并发的问题 先看没有利用事务的时候并发的后果 创建库存管理表 CREATE TABLE `storage` ...
- centos7下源码方式安装gitlab8.9+发送邮件+ldap
CentOS7下源码方式安装gitlab 环境描述 操作系统: centos7 redis: >=2.8 mysql >=5.5.14 git >=2.7.4 架构设计 一台gitl ...
- C#中三种弹出信息窗口的方式
弹出信息框,是浏览器客户端的事件.服务器没有弹出信息框的功能. 方法一: asp.net页面如果需要弹出信息框,则需要在前台页面上注册一个javascript脚本,使用alert方法.使用Client ...
- Codeforces Round #200 (Div. 2)D. Alternating Current (堆栈)
D. Alternating Current time limit per test 1 second memory limit per test 256 megabytes input standa ...