参考:https://blog.csdn.net/nb_vol_1/article/details/51163625

1、源代码:

/** check RD costs for a CU block encoded with merge
* \param rpcBestCU
* \param rpcTempCU
* \returns Void
*/
Void TEncCu::xCheckRDCostMerge2Nx2N( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU DEBUG_STRING_FN_DECLARE(sDebug), Bool *earlyDetectionSkipMode )
{
assert( rpcTempCU->getSlice()->getSliceType() != I_SLICE ); // 确定该片是P Slice或者B Slice
TComMvField cMvFieldNeighbours[ * MRG_MAX_NUM_CANDS]; // double length for mv of both lists
UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS];
Int numValidMergeCand = ;
const Bool bTransquantBypassFlag = rpcTempCU->getCUTransquantBypass(); for( UInt ui = ; ui < rpcTempCU->getSlice()->getMaxNumMergeCand(); ++ui )
{
uhInterDirNeighbours[ui] = ;
}
UChar uhDepth = rpcTempCU->getDepth( ); // 获取当前深度
// 给PU中相应的partition写入分割模式
rpcTempCU->setPartSizeSubParts( SIZE_2Nx2N, , uhDepth ); // interprets depth relative to LCU level
// 取出Merge候选列表
rpcTempCU->getInterMergeCandidates( , , cMvFieldNeighbours,uhInterDirNeighbours, numValidMergeCand );

// 构造候选列表
Int mergeCandBuffer[MRG_MAX_NUM_CANDS];
for( UInt ui = ; ui < numValidMergeCand; ++ui )
{
mergeCandBuffer[ui] = ;
} Bool bestIsSkip = false; UInt iteration;
// 默认为false,iteration = 2
if ( rpcTempCU->isLosslessCoded())
{
iteration = ;
}
else
{
iteration = ;
}
DEBUG_STRING_NEW(bestStr)

//代码结构分析

//第一次不理skip模式,bestIsSkip的初始值为false;

//第二次不处理mergeCandBuffer[uiMergeCand]为1的情况.

  // 遍历两次:第一次无残差编码,第二次对残差编码
for( UInt uiNoResidual = ; uiNoResidual < iteration; ++uiNoResidual )
{
// 遍历所有Merge候选成员
for( UInt uiMergeCand = ; uiMergeCand < numValidMergeCand; ++uiMergeCand )
{
if(!(uiNoResidual== && mergeCandBuffer[uiMergeCand]==))
{
if( !(bestIsSkip && uiNoResidual == ) )
{
DEBUG_STRING_NEW(tmpStr)
// set MC parameters 设置运动补偿参数
rpcTempCU->setPredModeSubParts( MODE_INTER, , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setCUTransquantBypassSubParts( bTransquantBypassFlag, , uhDepth );
rpcTempCU->setChromaQpAdjSubParts( bTransquantBypassFlag ? : m_ChromaQpAdjIdc, , uhDepth );
rpcTempCU->setPartSizeSubParts( SIZE_2Nx2N, , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setMergeFlagSubParts( true, , , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setMergeIndexSubParts( uiMergeCand, , , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setInterDirSubParts( uhInterDirNeighbours[uiMergeCand], , , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->getCUMvField( REF_PIC_LIST_0 )->setAllMvField( cMvFieldNeighbours[ + *uiMergeCand], SIZE_2Nx2N, , ); // interprets depth relative to rpcTempCU level
rpcTempCU->getCUMvField( REF_PIC_LIST_1 )->setAllMvField( cMvFieldNeighbours[ + *uiMergeCand], SIZE_2Nx2N, , ); // interprets depth relative to rpcTempCU level // do MC 进行运动补偿
m_pcPredSearch->motionCompensation ( rpcTempCU, m_ppcPredYuvTemp[uhDepth] );
// estimate residual and encode everything 计算残差和RDCost,并进行编码
m_pcPredSearch->encodeResAndCalcRdInterCU( rpcTempCU,
m_ppcOrigYuv [uhDepth],
m_ppcPredYuvTemp[uhDepth],
m_ppcResiYuvTemp[uhDepth],
m_ppcResiYuvBest[uhDepth],
m_ppcRecoYuvTemp[uhDepth],
(uiNoResidual != ) DEBUG_STRING_PASS_INTO(tmpStr) ); #ifdef DEBUG_STRING
DebugInterPredResiReco(tmpStr, *(m_ppcPredYuvTemp[uhDepth]), *(m_ppcResiYuvBest[uhDepth]), *(m_ppcRecoYuvTemp[uhDepth]), DebugStringGetPredModeMask(rpcTempCU->getPredictionMode()));
#endif
// 第一次迭代时进行
if ((uiNoResidual == ) && (rpcTempCU->getQtRootCbf() == ))
{
// If no residual when allowing for one, then set mark to not try case where residual is forced to 0
mergeCandBuffer[uiMergeCand] = ;
} rpcTempCU->setSkipFlagSubParts( rpcTempCU->getQtRootCbf() == , , uhDepth );
Int orgQP = rpcTempCU->getQP( );
xCheckDQP( rpcTempCU );
// 更新最优模式
xCheckBestMode(rpcBestCU, rpcTempCU, uhDepth DEBUG_STRING_PASS_INTO(bestStr) DEBUG_STRING_PASS_INTO(tmpStr));
// 重新初始化预测参数,为下一次预测做准备
rpcTempCU->initEstData( uhDepth, orgQP, bTransquantBypassFlag ); if( m_pcEncCfg->getUseFastDecisionForMerge() && !bestIsSkip )
{
bestIsSkip = rpcBestCU->getQtRootCbf() == ;
}
}
}
}

// 如果开启earlyDetectionSkip时,第一次迭代执行
if(uiNoResidual == && m_pcEncCfg->getUseEarlySkipDetection())
{
if(rpcBestCU->getQtRootCbf( ) == )
{
if( rpcBestCU->getMergeFlag( ))
{
*earlyDetectionSkipMode = true;
}
else if(m_pcEncCfg->getFastSearch() != SELECTIVE)
{
Int absoulte_MV=;
for ( UInt uiRefListIdx = ; uiRefListIdx < ; uiRefListIdx++ )
{
if ( rpcBestCU->getSlice()->getNumRefIdx( RefPicList( uiRefListIdx ) ) > )
{
TComCUMvField* pcCUMvField = rpcBestCU->getCUMvField(RefPicList( uiRefListIdx ));
Int iHor = pcCUMvField->getMvd( ).getAbsHor();
Int iVer = pcCUMvField->getMvd( ).getAbsVer();
absoulte_MV+=iHor+iVer;
}
} if(absoulte_MV == )
{
*earlyDetectionSkipMode = true;
}
}
}
}
}
DEBUG_STRING_APPEND(sDebug, bestStr)
}

HM16.0之帧间Merge模式——xCheckRDCostMerge2Nx2N的更多相关文章

  1. HM16.0之帧间预测——xCheckRDCostInter()函数

    参考:https://blog.csdn.net/nb_vol_1/article/category/6179825/1? 1.源代码: #if AMP_MRG Void TEncCu::xCheck ...

  2. HM16.0之帧内模式——xCheckRDCostIntra()函数

    参考:https://blog.csdn.net/nb_vol_1/article/category/6179825/1? 1.源代码: Void TEncCu::xCheckRDCostIntra( ...

  3. HM16.0 TAppEncoder

    参考:  https://www.cnblogs.com/tiansha/p/6458573.html https://blog.csdn.net/liangjiubujiu/article/deta ...

  4. x264源代码简单分析:宏块分析(Analysis)部分-帧间宏块(Inter)

    ===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...

  5. Paper | 帧间相关性 + 压缩视频质量增强(MFQE)

    目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 3.1. Quality Enhancement 3.2. Multi-frame Super-reso ...

  6. x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*()

    x264代码剖析(十三):核心算法之帧间预測函数x264_mb_analyse_inter_*() 帧间预測是指利用视频时间域相关性,使用临近已编码图像像素预測当前图像的像素,以达到有效去除视频时域冗 ...

  7. 【HEVC帧间预测论文】P1.7 Content Based Hierarchical Fast Coding Unit Decision Algorithm

    Content Based Hierarchical Fast Coding Unit Decision Algorithm For HEVC <HEVC标准介绍.HEVC帧间预测论文笔记> ...

  8. 【HEVC帧间预测论文】P1.4 Motion Vectors Merging: Low Complexity Prediction Unit Decision

    Motion Vectors Merging: Low Complexity Prediction Unit Decision Heuristic for the inter-Prediction o ...

  9. 【HEVC帧间预测论文】P1.3 Fast Inter-Frame Prediction Algorithm of HEVC Based on Graphic Information

    基于图形信息的HEVC帧间预测快速算法/Fast Inter-Frame Prediction Algorithm of HEVC Based on Graphic Information <H ...

随机推荐

  1. java JDBC自我总结

    preparedstatement和statement的区别 当不需要预编译时(不需要占位符)可以选用statement,存在不安全 当有占位符(?)时,需要选用preparedstatement s ...

  2. IDEA 修改快捷键和Myeclipse 快捷键一致

    介绍 我们知道IDEA这款开发工具功能很强大,为了简化开发步骤,提高开发效率,使用快捷键很显然是必不可少的,那么怎么才能使得IDEA快捷键和MyEclipse快捷键 保持相同呢? 第一种方法,一个快捷 ...

  3. 2020牛客暑假多校训练营 第二场 E Exclusive OR FWT

    LINK:Exclusive OR 没做出 原因前面几篇说过了. 根据线性基的知识容易推出 不超过\(w=log Mx\)个数字即可拼出最大值 其中Mx为值域. 那么考虑w+2个数字显然也为最大值.. ...

  4. python之路第一节-pip的使用

    第一次写博客,一边吃着旺仔冻痴一边学着python,爽~ 我之理解pip 首先,python封装好了大量的函数,这些函数存在各种各样的库中. 那么怎么去向我们可爱的pycharm等软件导入这些库呢,两 ...

  5. Spring Validation最佳实践及其实现原理,参数校验没那么简单!

    之前也写过一篇关于Spring Validation使用的文章,不过自我感觉还是浮于表面,本次打算彻底搞懂Spring Validation.本文会详细介绍Spring Validation各种场景下 ...

  6. ios签名app稳定不掉签技术详细教程详解

    iOS签名是专门针对ios的APP内测的数字签名,是苹果面向开发者提出的一箱机制. 因为现在苹果APP下载渠道只有App Store,还可以加上一个内测用的testflight,也就是说,除了这两个官 ...

  7. DataGrip,一款数据库客户端工具,IDEA的兄弟是真香!

    DataGrip 是一款数据库管理客户端工具,方便的连接到数据库服务器,执行sql语句.创建表.创建索引以及导出数据等. DataGrip 支持几乎所有主流的关系数据库产品,如 DB2.Derby.H ...

  8. 浅析FMT,CMT, SMT区别

    FMT(fine-grained multithreading)又叫交叉多线程或指令交错多线程 –       每个时钟周期都进行线程的切换,多个线程交替执行,同一个周期只从一个线程发射指令到功能部件 ...

  9. Hive对字段进行urlDecode

    最近项目中需要对埋点日志hive表进行分析,并且按一定的规则统计出来满足要求的用户pin.本来以为是一件比较简单的事,结果在查看导出的词表时发现很多带有"%"的明显具有url en ...

  10. SpringBoot学习之整合Swagger

    Swagger介绍 1.什么是Swagger 作为后端程序开发,我们多多少少写过几个后台接口项目,不管是编写手机端接口,还是目前比较火热的前后端分离项目,前端与后端都是由不同的工程师进行开发,那么这之 ...