LINK:下落的圆盘

计算几何。n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度。

在做这道题之前有几个前置知识。

极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系。

如:在平面上取一点 O 叫做极点 从O出发引一条射线Ox 称为极轴。通常规定角度取逆时针方向为正。

极角:在极坐标系中 平面上任何一点到极点的连线和极轴的夹角叫做极角。

那么 我们可以发现极角的大小为0~360度(考虑正角。

极角可以进行排序 由小到大的那种。

那么对于平面上一个点(x,y)到极点的连线 和极轴x的夹角大小为 atan2(y/x).

atan2指的tan的反函数是方位角 atan2 比 atan稳定 所以我们使用atan2.

但是我们要求出极角来 这个返回的是方位角 如果当前角度为正 那么就是极角 如果为负 我们需要将其加上2pi 就变成极角了。

接下来就可以做这道题了 首先考虑两圆相交如何求夹角?

余弦定理+acos函数即可 n^2求交 然后我们发交的地方只算一次 所以可以利用极角来做。

求出所有的极角之后 按极角排序 然后就是直线的覆盖问题。

const int MAXN=1010;
const double pi=acos(-1.0);
struct wy
{
db pl,pr;
bool operator <(const wy &a)const {return pl<a.pl;}
}a[MAXN<<1];
db x[MAXN],y[MAXN],r[MAXN],ans;
int cnt,n;
int main()
{
freopen("1.in","r",stdin);
gt(n);
rep(1,n,i)gf(r[i]),gf(x[i]),gf(y[i]);
rep(1,n,i)
{
ans+=2*pi*r[i];
cnt=0;
rep(i+1,n,j)
{
db d=pf(x[i]-x[j])+pf(y[i]-y[j]);
if(pf(r[i]+r[j])<=d)continue;
if(pf(r[i]-r[j])>=d)
{
if(r[i]>r[j])continue;
else a[++cnt].pl=0,a[cnt].pr=2*pi;
}
else
{
db w=acos((pf(r[i])+d-pf(r[j]))/(2*r[i]*sqrt(d)));
db ww=atan2(y[j]-y[i],x[j]-x[i]);//方位角
if(ww<0)ww+=2*pi;++cnt;//极角
a[cnt].pl=ww-w;a[cnt].pr=ww+w;
if(a[cnt].pl<0)++cnt,a[cnt].pl=a[cnt-1].pl+2*pi,a[cnt-1].pl=0,a[cnt].pr=2*pi;
else if(a[cnt].pr>2*pi)++cnt,a[cnt].pr=a[cnt-1].pr-2*pi,a[cnt-1].pr=2*pi,a[cnt].pl=0;
}
}
sort(a+1,a+1+cnt);
db last=-1;
rep(1,cnt,j)
{
if(a[j].pr<=last)continue;
if(a[j].pl>last)ans-=(a[j].pr-a[j].pl)*r[i];
else ans-=(a[j].pr-last)*r[i];
last=a[j].pr;
}
}
printf("%.3lf\n",ans);
return 0;
}

luogu P2510 [HAOI2008]下落的圆盘的更多相关文章

  1. 洛谷P2510 [HAOI2008]下落的圆盘(计算几何)

    题面 传送门 题解 对于每个圆,我们单独计算它被覆盖的周长是多少 只有相交的情况需要考虑,我们需要知道相交的那段圆弧的角度,发现其中一个交点和两个圆的圆心可以构成一个三角形且三边都已经知道了,那么我们 ...

  2. P2510 [HAOI2008]下落的圆盘

    传送门 首先考虑两个圆覆盖的情况,我们可以求出圆心与交点连线 $A$ 的极角 具体就是求出两圆心连线 $B$ 极角加上余弦定理加反余弦求出 $A,B$ 之间夹角 ,然后覆盖了多少就可以得出 但是多个圆 ...

  3. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  4. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

  5. BZOJ 1043 HAOI2008 下落的圆盘 计算几何

    题目大意:n个圆盘依次下落.求终于能看到的轮廓线面积 円盘反对! 让我们一起团结起来! 赶走円盘! 咳咳.非常神的一道题 今天去看了题解和白书才搞出来-- 首先我们倒着做 对于每一个圆盘处理出在它之后 ...

  6. [HAOI2008]下落的圆盘

    Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红 色线条的总长度即为所求. Input 第一行为1个整数n,N<=100 ...

  7. bzoj1043 [HAOI2008]下落的圆盘

    Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. Input 第一行为1个整数n,N<=1000 ...

  8. BZOJ1043:[HAOI2008]下落的圆盘——题解(配图片)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1043 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周 ...

  9. Bzoj1313 [HAOI2008]下落的圆盘

    有 n 个圆盘从天而降,后面落下的可以盖住前面的.最后按掉下的顺序,在平面上依次测得每个圆盘的圆心和半径,问下落完成后从上往下看,整个图形的周长是多少,即你可以看到的圆盘的轮廓的圆盘的轮廓总长.例如下 ...

随机推荐

  1. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  2. cf1216E2 Numerical Sequence (hard version) 二分查找、思维题

    题目描述 The only difference between the easy and the hard versions is the maximum value of k. You are g ...

  3. 如何更换Windows中命令提示符(cmd)中的字体

    前言 CMD(命令提示符),全称"Command Prompt":对于这个东西我相信大部分用电脑的人基本都知道,因为常常会用到一些基本的DOS命令进行一些电脑的基本查看处理:但是我 ...

  4. 小程序报错 parameter.content should be String instead of Undefined;

    自己遇到了两种情况会导致这个问题 1.参数名写错未定义,然后赋值的时候值为undefined 2.服务端返回的值错误,返回的值为空,导致赋值时报错 解决方法: 1.检查参数名,如不是全局变量的应在da ...

  5. Django2.0.6-Xadmin后台源码安装流程(python 3.8+django 2.0)

    1. 命令行执行 pip install git+git://github.com/sshwsfc/xadmin.git@django2 2.修改url.py 3.修改setting.py 4.卸载x ...

  6. python之爬虫(十) Selenium库的使用

    一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...

  7. python之将一个字符串str的内容倒叙过来,并输出。

    inStr = input() flashback = inStr[::-1] print(flashback)

  8. 集合-ConcurrentLinkedQueue 源码解析

    问题 (1)ConcurrentLinkedQueue是阻塞队列吗? (2)ConcurrentLinkedQueue如何保证并发安全? (3)ConcurrentLinkedQueue能用于线程池吗 ...

  9. 6 个珍藏已久 IDEA 小技巧,这一波全部分享给你!

    每周趣图 产品经理设计体验/用户实际体验 本周就不写技术分析文章了,分享几个珍藏已久的 IDEA 的「骚技巧」,助你快速完成代码. 还等什么?赶紧上车吧...... 先赞后看,养成习惯.微信搜索「程序 ...

  10. Ubuntu虚拟机设置共享文件夹

    Ubuntu虚拟机设置共享文件夹 注:个人笔记,小白笔记. 点击设置 进入到Ubuntu 中 cd /mnt/hgfs/ 后   我们会看到自己设置的共享文件夹.