B. The Bakery

 

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

Input

The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

Output

Print the only integer – the maximum total value of all boxes with cakes.

Examples

input

4 1
1 2 2 1

output

2

input

7 2
1 3 3 1 4 4 4

output

5

input

8 3
7 7 8 7 7 8 1 7

output

6

Note

In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

题意:

把 n 个数划分成 m 段,要求每组数不相等的数的数量最大之和。

思路:

dp方程 : dp[i][j] = max( dp[k][j-1] + v(k, i) );( j<=k<i , k = j, j+1, +...+ i-1)

dp[i][j]表示第 i 个数分到第 j 段的最大值。

v(k, i) 表示k~i中不同数的个数,此处用hash记录每个数上一次出现的位置,从上一次出现的位置到当前位置的 dp[i][j-1] 值均可+1。

线段树优化:维护 dp[k~i][j-1]的最大值。
此时时间复杂度 O(n*m*log(n))。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn = 35010, maxk = 55, INF = 0x3f3f3f3f; int a[maxn], dp[maxn][maxk], last[maxn], now[maxn];
int maxv[maxn<<2], lazy[maxn<<2]; push_down(int rt)
{
if(lazy[rt])
{
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
maxv[rt<<1]+=lazy[rt];
maxv[rt<<1|1]+=lazy[rt];
lazy[rt]=0;
}
} push_up(int rt)
{
maxv[rt]=max(maxv[rt<<1], maxv[rt<<1|1]);
} void update(int l, int r, int rt, int ul, int ur, int v)
{
if(ul<=l && r<=ur)
{
maxv[rt]+=v;
lazy[rt]+=v;
return;
}
push_down(rt);
int m=(l+r)/2;
if(ul<=m) update(lson, ul, ur, v);
if(m<ur) update(rson, ul, ur, v);
push_up(rt);
} int query(int l, int r, int rt, int ql, int qr)
{
if(ql<=l && r<=qr)
return maxv[rt];
push_down(rt);
int m=(l+r)/2, res=-INF;
if(ql<=m) res=max(res, query(lson, ql, qr));
if(qr>m) res=max(res, query(rson, ql, qr));
push_up(rt);
return res;
} int main()
{
int n, m;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i)
scanf("%d", &a[i]);
for(int i=1; i<=n; ++i)
{
last[i]=now[a[i]];
now[a[i]]=i;
}
for(int j=1; j<=m; ++j)
{
if(j!=1)
{
memset(maxv, 0, sizeof maxv);
memset(lazy, 0, sizeof lazy);
for(int i=j-1; i<=n; ++i)
{
update(0, n, 1, i, i, dp[i][j-1]);
}
}
update(0, n, 1, max(j-1, last[j]), j-1, 1);
dp[j][j]=j;
for(int i=j+1; i<=n; ++i)
{
update(0, n, 1, max(j-1, last[i]), i-1, 1);
dp[i][j]=query(0, n, 1, j-1, i-1);
}
}
printf("%d\n", dp[n][m]);
return 0;
}

codeforces#426(div1) B - The Bakery (线段树 + dp)的更多相关文章

  1. Codeforces.833B.The Bakery(线段树 DP)

    题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...

  2. CF833B The Bakery (线段树+DP)

    题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值 考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写 ...

  3. codeforces E. Trains and Statistic(线段树+dp)

    题目链接:http://codeforces.com/contest/675/problem/E 题意:你可以从第 i 个车站到 [i + 1, a[i]] 之间的车站花一张票.p[i][j]表示从 ...

  4. codeforces 675E E. Trains and Statistic(线段树+dp)

    题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  5. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  6. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  7. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  8. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  9. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. Vue Render自定义tabled单元格内容

    解决问题 只举一个例子(我正好需要用到的) 在写中后台时, 如果对 表格组件 再度封装了, 比如这样的 以element-ui 为例: <template> <el-table :d ...

  2. Vue iview Tree组件实现文件目录-基础实现

    注册页面路由 router/router.js { path: 'folder_tree', name: 'folderTree', component: () => import('@/vie ...

  3. javaweb开发中的常见错误

    Javaweb中的最常见错误及其解决方法 1.200:表示成功处理业务. 2.400 请求出错: 由于语法格式有误,服务器无法理解此请求.不作修改,客户程序就 无法重复此请求. 解决办法:,遇到400 ...

  4. Halcon使用骨架法处理激光条并拟合直线

    dev_close_window () * 设置颜色 dev_set_color ('green') * 读取图像 read_image (Image, 'images3/1') * 获得图像尺寸 g ...

  5. 如何使用 C# 中的 ValueTask

    在 C# 中利用 ValueTask 避免从异步方法返回 Task 对象时分配 翻译自 Joydip Kanjilal 2020年7月6日 的文章 <How to use ValueTask i ...

  6. 用 Java 做个“你画手机猜”的小游戏

    本文适合有 Java 基础的人群 作者:DJL-Lanking HelloGitHub 推出的<讲解开源项目>系列.有幸邀请到了亚马逊 + Apache 的工程师:Lanking( htt ...

  7. 国产化之路-安装WEB服务器

    专题目录 国产化之路-统信UOS操作系统安装 国产化之路-国产操作系统安装.net core 3.1 sdk 国产化之路-安装WEB服务器 国产化之路-安装达梦DM8数据库 国产化之路-统信UOS + ...

  8. Object.defineProperty和proxy

    Object.defineProperty问题 Object.defineProperty() 无法监控到数组下标的变化.vue只能通过以下几种方法来监听 pop() shift() unshift( ...

  9. Salesforce Javascript(二) 箭头函数

    本篇参考:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Functions/Arrow_functions 我们在 ...

  10. Linux下彻底删除安装的rpm包

    如何彻底Linux系统下安装的rpm包?现以mySQL为例进行介绍: 一.使用以下命令查看mysql安装情况 [root@xpq mysql]# rpm -qa|grep -i mysql MySQL ...