B. The Bakery

 

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

Input

The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

Output

Print the only integer – the maximum total value of all boxes with cakes.

Examples

input

4 1
1 2 2 1

output

2

input

7 2
1 3 3 1 4 4 4

output

5

input

8 3
7 7 8 7 7 8 1 7

output

6

Note

In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

题意:

把 n 个数划分成 m 段,要求每组数不相等的数的数量最大之和。

思路:

dp方程 : dp[i][j] = max( dp[k][j-1] + v(k, i) );( j<=k<i , k = j, j+1, +...+ i-1)

dp[i][j]表示第 i 个数分到第 j 段的最大值。

v(k, i) 表示k~i中不同数的个数,此处用hash记录每个数上一次出现的位置,从上一次出现的位置到当前位置的 dp[i][j-1] 值均可+1。

线段树优化:维护 dp[k~i][j-1]的最大值。
此时时间复杂度 O(n*m*log(n))。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn = 35010, maxk = 55, INF = 0x3f3f3f3f; int a[maxn], dp[maxn][maxk], last[maxn], now[maxn];
int maxv[maxn<<2], lazy[maxn<<2]; push_down(int rt)
{
if(lazy[rt])
{
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
maxv[rt<<1]+=lazy[rt];
maxv[rt<<1|1]+=lazy[rt];
lazy[rt]=0;
}
} push_up(int rt)
{
maxv[rt]=max(maxv[rt<<1], maxv[rt<<1|1]);
} void update(int l, int r, int rt, int ul, int ur, int v)
{
if(ul<=l && r<=ur)
{
maxv[rt]+=v;
lazy[rt]+=v;
return;
}
push_down(rt);
int m=(l+r)/2;
if(ul<=m) update(lson, ul, ur, v);
if(m<ur) update(rson, ul, ur, v);
push_up(rt);
} int query(int l, int r, int rt, int ql, int qr)
{
if(ql<=l && r<=qr)
return maxv[rt];
push_down(rt);
int m=(l+r)/2, res=-INF;
if(ql<=m) res=max(res, query(lson, ql, qr));
if(qr>m) res=max(res, query(rson, ql, qr));
push_up(rt);
return res;
} int main()
{
int n, m;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i)
scanf("%d", &a[i]);
for(int i=1; i<=n; ++i)
{
last[i]=now[a[i]];
now[a[i]]=i;
}
for(int j=1; j<=m; ++j)
{
if(j!=1)
{
memset(maxv, 0, sizeof maxv);
memset(lazy, 0, sizeof lazy);
for(int i=j-1; i<=n; ++i)
{
update(0, n, 1, i, i, dp[i][j-1]);
}
}
update(0, n, 1, max(j-1, last[j]), j-1, 1);
dp[j][j]=j;
for(int i=j+1; i<=n; ++i)
{
update(0, n, 1, max(j-1, last[i]), i-1, 1);
dp[i][j]=query(0, n, 1, j-1, i-1);
}
}
printf("%d\n", dp[n][m]);
return 0;
}

codeforces#426(div1) B - The Bakery (线段树 + dp)的更多相关文章

  1. Codeforces.833B.The Bakery(线段树 DP)

    题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...

  2. CF833B The Bakery (线段树+DP)

    题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值 考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写 ...

  3. codeforces E. Trains and Statistic(线段树+dp)

    题目链接:http://codeforces.com/contest/675/problem/E 题意:你可以从第 i 个车站到 [i + 1, a[i]] 之间的车站花一张票.p[i][j]表示从 ...

  4. codeforces 675E E. Trains and Statistic(线段树+dp)

    题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  5. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  6. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  7. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  8. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  9. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. Scanner输入方法

    输入语句: * import java.util.Scanner; * System.out.println("请输入你想输入的东西:"); * Scanner (自定义)sc = ...

  2. k8s&docker面试总结

    花了大半个月对k8s&docker进行了梳理,包括之前读过的书,官方文档以及k&d在公司项目的实践等. 以下是个人对docker & k8s 面试知识点的总结: 1 docke ...

  3. Java Web学习(十)Java拦截器

    文章更新时间:2020/04/07 一.引言 既然要用拦截器,首先先得简单了解一下什么是拦截器: 概念:java里的拦截器是动态拦截Action调用的对象,它提供了一种机制可以使开发者在一个Actio ...

  4. Typora操作总结

    Typora 1. Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档 1.1 目录  [toc] 2. 结构类操作 2.1 多级标题  #       一级标题   ...

  5. 基于python的webUI自动化-小白基础篇

    最近打算研究一下基于python的webUI自动化,先自学了一下相关基础知识,大概用了一个多月的时间,主要是找视频,一边看视频或者文档一边对照着敲代码运行. 重点强调:一定要一边看一边对照着敲代码运行 ...

  6. Vue编写的页面部署到springboot网站项目中出现页面加载不全问题

    问题描述: 在用Vue脚手架 编写出一个页面之后, 部署到后台项目中, 因为做的是一个页面 按理来说 怎么都能够在服务器上运行 , 我也在自己的node环境测试 , 在同学的springboot上运行 ...

  7. LeetCode刷题的一点个人建议和心得

    目录 1.    为什么我们要刷LeetCode? 2.    LeetCode的现状和问题 3.    本文的初衷 4.    LeetCode刷题建议 4.1入门数据结构,打基础阶段 4.2 建立 ...

  8. 024 01 Android 零基础入门 01 Java基础语法 03 Java运算符 04 关系运算符

    024 01 Android 零基础入门 01 Java基础语法 03 Java运算符 04 关系运算符 本文知识点:Java中的关系运算符 关系运算符

  9. C/C++常用头文件

    原文来源:https://blog.csdn.net/thisispan/article/details/7470335 无聊的时候可以多看看: C/C++头文件一览C#include <ass ...

  10. C语言中time_t数据类型详细介绍

    包含文件:<time.h> #ifndef __TIME_T #define __TIME_T     /* 避免重复定义 time_t */ typedef long     time_ ...