关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为【poj 1287】Networking。
题意我就不说了,我就想简单讲一下Kruskal和Prim算法。卡Kruskal的题似乎几乎为0。(●-`o´-)ノ
假设有一个N个点的连通图,有M条边(不定向),求MST(Minimal Spanning Tree)最小生成树的值。
1.Kruskal 克鲁斯卡算法
概述:将边从小到大排序,依次将边两端的不在同一个联通分量/联盟的点分别加入一个个联盟内,将边也纳入,计入答案。最终N个点合并为一个联盟,也就是纳入联盟内的边达到N-1条就结束算法。
实现:并查集。
时间复杂度:O(m log m+m*k)≈O(m log m)
应用:稀疏图(Sparse Graph, 由于主要看边数)
注意——无须建2条双向边,因为每次纳入点,但时间复杂度又是按边算的。
代码如下——
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7 const int N=110,M=5010,D=10010;
8
9 //这是无向边的图,不用建2倍的便关于方向的边。
10 struct node
11 {
12 int x,y,d;
13 node() {}//
14 node(int x,int y,int d):x(x),y(y),d(d) {}//
15 //bool operator < (const node& now) const
16 //{ return d<now.d; }
17 }a[M];
18 int fa[N];
19 int n,m;
20
21 bool cmp(node x,node y) {return x.d<y.d;}
22 int mmin(int x,int y) {return x<y?x:y;}
23 int ffind(int x)
24 {//保持树的形态不变,顺便把遍历过的结点都改成树根的子节点,而不是之前子节点的子节点(这样要find要调用很多层)
25 if (fa[x]!=x) fa[x]=ffind(fa[x]);
26 return fa[x];
27 }
28 int Kruskal()
29 {
30 int i,k;
31 int x,y,xx,yy;
32 int cnt=0,ans=0;
33 sort(a+1,a+1+m,cmp);
34 for (i=1;i<=n;i++) fa[i]=i;
35 for (i=1;i<=m;i++)//从最小的边开始选
36 {
37 x=a[i].x,xx=ffind(x);
38 y=a[i].y,yy=ffind(y);
39 if (xx!=yy)
40 {
41 cnt++,ans+=a[i].d;
42 fa[xx]=yy;
43 if (cnt==n-1) break;//边选够了
44 }
45 }
46 return ans;
47 }
48 int main()
49 {
50 while (scanf("%d",&n)!=EOF && n)
51 {
52 scanf("%d",&m);
53 int i,x,y,d;
54 for (i=1;i<=m;i++)
55 {
56 scanf("%d%d%d",&x,&y,&d);
57 a[i]=node(x,y,d);//
58 }
59 printf("%d\n",Kruskal());
60 }
61 return 0;
62 }
Kruskal
2.Prim 普里姆算法
概述:先将1个点纳入联盟内,于是每次新纳入离联盟最近的点(看联盟内的点连到联盟外的点的边权),更新距离。
实现:邻接矩阵 或 邻接表+优先队列
时间复杂度:O(n2) & O(m log n)
【别人说邻接表的是O(m log n),还是O(m+n)(??),可我用的是邻接表但并不那么觉得......既然这个算法几乎用不到,我就不深究了。然后我之后发现求SP最短路的Dijkstra 迪杰斯特拉算法除了“更新距离”那里不一样,其他代码都是一模一样的!⊙o⊙ 所以优化后的内容可以参考我的另外一篇的博文了。就是这个:关于最短路径问题(图论)】
应用:稠密图(Dense Graph, 由于主要看点数)
注意——由于用到了邻接表的last[]和a[].next,所以要建双向边。
代码如下——(无优化的)
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 #include<algorithm>
6 using namespace std;
7
8 const int N=55,M=3010,D=110;
9 int n,m,len;
10 struct edge
11 {
12 int x,y,d,next;
13 edge() {}
14 edge(int x,int y,int d):x(x),y(y),d(d) {}
15 }a[M];
16 int dis[N],vis[N],last[N];
17
18 int mmin(int x,int y) {return x<y?x:y;}
19 void ins(int x,int y,int d)
20 {
21 a[++len]=edge(x,y,d);
22 a[len].next=last[x],last[x]=len;
23 }
24 int Prim()
25 {
26 int i,j,k,ans=0;
27 memset(vis,0,sizeof(vis));
28 memset(dis,63,sizeof(dis));//点到联盟的距离
29 dis[1]=0;//candidate
30 for (i=1;i<=n;i++)//每次选一个到联盟距离最小的vertices顶点
31 {
32 int p=0;
33 for (j=1;j<=n;j++)
34 if (!vis[j] && dis[j]<dis[p]) p=j;
35 ans+=dis[p];
36 dis[p]=0,vis[p]=1;
37 for (k=last[p];k;k=a[k].next)//调整
38 {
39 int y=a[k].y;
40 dis[y]=mmin(dis[y],a[k].d);
41 }
42 }
43 return ans;
44 }
45 int main()
46 {
47 int i,x,y,d;
48 while (scanf("%d",&n)!=EOF && n)
49 {
50 scanf("%d",&m);
51 memset(last,0,sizeof(last));
52 len=0;
53 for (i=1;i<=m;i++)
54 {
55 scanf("%d%d%d",&x,&y,&d);
56 ins(x,y,d),ins(y,x,d);
57 }
58 m*=2;
59 printf("%d\n",Prim());
60 }
61 return 0;
62 }
Prim 邻接表
还有一个模版题:【uva 1395】Slim Span(图论--最小生成树+结构体快速赋值 模版题)
关于最小生成树 Kruskal 和 Prim 的简述(图论)的更多相关文章
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
- 最小生成树算法(Prim,Kruskal)
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...
- 稀疏图(邻接链表),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)
全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue ...
- 稠密图(邻接矩阵),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)
全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue ...
- 最小生成树(Kruskal和Prim算法)
关于图的几个概念定义: 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路 ...
- 1.1.2最小生成树(Kruskal和Prim算法)
部分内容摘自 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意 ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 数据结构之最小生成树Kruskal算法
1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...
随机推荐
- Linux学习笔记 | 配置ssh
目录: SSH的必要性 将默认镜像源修改为清华镜像源 Linux安装ssh软件 使用putty软件实现ssh连接 Windows下安装winscp SSH的必要性 一般服务器都位于远程而非本地,或者及 ...
- 【Spring】 Spring的核心容器
Spring的核心容器 文章目录 Spring的核心容器 BeanFactory ApplicationContext 1.通过ClassPathXmlApplicationContext创建 2.通 ...
- dd命令的详细介绍
1.命令简介 dd 的主要选项: 指定数字的地方若以下列字符结尾乘以相应的数字: b=512, c=1, k=1024, w=2, xm=number m if=file #输入文件名,缺省为标准输 ...
- 【Oracle】想查询相关的v$视图,但是提示表或视图不存在解决办法
原因是使用的用户没有相关的查询权限导致 解决办法: grant select any dictionary to 用户; --这个权限比较大 这个权限是最低的要求,但是可以访问到v$相关视图 ...
- bash shell数组使用总结
本文为原创博文,转发请注明原创链接:https://www.cnblogs.com/dingbj/p/10090583.html 数组的概念就不多说了,大家都懂! shell数组分为索引数组和关联数 ...
- oracle RAC和RACOneNode之间的转换
Convert RAC TO RACOneNode 1.查看资源状态 [grid@rac01 ~]$ crsctl status res -t 从这里看到,数据库的名字叫racdb 2.查看实例 [o ...
- 快速查询表中的NULL数据
正常情况下,NULL值是不会放入B-TREE索引的,因此根据IS NULL查询的时候走的通常是全表扫描,如果记录比较少还好,记录比较多,查询会非常耗时 可以通过创建一个索引来解决 CREATE IND ...
- oracle ORA-00060死锁查询、表空间扩容
--查看被锁住的表 select b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_object a,dba_objects ...
- (数据科学学习手札104)Python+Dash快速web应用开发——回调交互篇(上)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- 1.2V转3.3V芯片电路图,超简电路
镍氢可充电电池1.2V转成3.3V的电路和电子产品很多,在实际适用中,即使是两节镍氢电池串联供电也是会有供电电压下降和不稳定的影响,这是因为电池电量减少,而导致电池的电压也是会随着降低. 一般情况下, ...