Metropolis Hasting算法
Metropolis Hasting Algorithm:
MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样。主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度。它的优点,不用多说,自然是能够对付数学形式复杂的概率密度。有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了。
今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄。即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问题不同对待,多试验几次。当然你也能够始终选择“理想”參数。
还是拿上次的混合高斯分布来做模拟,模拟次数为500000次的时候,概率分布逼近的程度例如以下图。尽管几个明显的"峰"已经出来了,可是数值上还是 有非常大差异的。预计是我的漂移方差没有选好。感觉还是inverse sampling好用,迭代次数不用非常多,就能够达到相当的逼近程度。
试了一下MH算法,
R Code:
p=function(x,u1,sig1,u2,sig2){
(1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
}
MH=function(x0,n){
x=NULL
x[1] = x0
for (i in 1:n){
x_can= x[i]+rnorm(1,0,3.25)
d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
alpha= min(1,d)
u=runif(1,0,1)
if (u<alpha){
x[i+1]=x_can}
else{
x[i+1]=x[i]
}
if (round(i/100)==i/100) print(i)
}
x
}
z=MH(10,99999)
z=z[-10000]
a=seq(-100,100,0.2)
plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))
Metropolis Hasting算法的更多相关文章
- MCMC: The Metropolis Sampler
本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\) ...
- 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...
- 机器学习 —— 概率图模型(Homework: MCMC)
除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果 ...
- 蒙特卡洛马尔科夫链(MCMC)
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报 分类: 数据挖掘与机器学习(41) 版权声明: ...
- MCMC: The Metropolis-Hastings Sampler
本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布 ...
- [转] - MC、MC、MCMC简述
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...
- MC, MCMC, Gibbs采样 原理&实现(in R)
本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...
- MC, MCMC, Gibbs採样 原理&实现(in R)
本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个样 ...
- MCMC采样理论的一点知识
看了好多相关的知识,大致了解了一下马尔可夫链-蒙特卡罗采样理论,有必要记来下来. 蒙特卡罗积分:(来自:http://blog.csdn.net/itplus/article/details/1916 ...
随机推荐
- where 1=1
sql: where 1=1 1=1 永真, 1<>1 永假. 1<>1 的用处: 用于只取结构不取数据的场合 例如: 拷贝表 create table_name as ...
- SHDP--Working With HBase(一)之基本介绍
最近在做web项目使用到了Hadoop,HBase,在这里对Spring For Hadoop(SHDP)的使用做个总结,主要使用了SHDP中提供的一些封装好的HBase模块. Spring For ...
- Splay POJ3468(老题新做)
A Simple Problem with Integers Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d ...
- freemarker声明变量
freemarker声明变量 1.使用assign创建和替换变量 (1)新建声明变量的ftl variable.ftl: <html> <head> <meta http ...
- 【类似N^N做法的斐波那契数列】【HDU1568】 Fibonacci
Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 关于mysql binlog日志的格式说明
Binary Log 记录方式 Row Level Binary Log会记录成每一行数据被修改的形式,然后在Slave端再对相同的数据进行修改. 如果修改了表的结构,那么binlog日志记录的是重新 ...
- 如何改变word修订模型下的视图
在Word中执行与Find.Range等相关的操作时,需对修订模式下的文档进行特殊处理. 核心知识点 Word中的 RevisionsView 属性只有两种设置:显示标记的最终状态(Final Sho ...
- SQL创建/修改数据库、表
--创建表 create table 表(a1 varchar(10),a2 char(2)) --为表添加描述信息 EXECUTE sp_addextendedproperty N'MS_Descr ...
- PHP学习笔记八【数组】
<?php //定义数组 $hens[0]=3; $hens[1]=5; $hens[2]=1; $hens[3]=3.4; $hens[4]=2; $hens[5]=50; //遍历整个数组 ...
- URI--http://zh.wikipedia.org/wiki/%E7%BB%9F%E4%B8%80%E8%B5%84%E6%BA%90%E6%A0%87%E5%BF%97%E7%AC%A6
维基百科,自由的百科全书 在电脑术语中,统一资源标识符(Uniform Resource Identifier,或URI)是一个用于标识某一互联网资源名称的字符串. 该种标识允许用户对网络中( ...