Metropolis Hasting Algorithm:

MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样。主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度。它的优点,不用多说,自然是能够对付数学形式复杂的概率密度。有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了。

今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄。即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问题不同对待,多试验几次。当然你也能够始终选择“理想”參数。

还是拿上次的混合高斯分布来做模拟,模拟次数为500000次的时候,概率分布逼近的程度例如以下图。尽管几个明显的"峰"已经出来了,可是数值上还是 有非常大差异的。预计是我的漂移方差没有选好。感觉还是inverse sampling好用,迭代次数不用非常多,就能够达到相当的逼近程度。

试了一下MH算法,

R Code:

p=function(x,u1,sig1,u2,sig2){
(1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
}

MH=function(x0,n){
x=NULL
x[1] = x0
for (i in 1:n){
  x_can= x[i]+rnorm(1,0,3.25)
  d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
  alpha= min(1,d)
  u=runif(1,0,1)
    if (u<alpha){
    x[i+1]=x_can}
    else{
      x[i+1]=x[i]
     }
   if (round(i/100)==i/100) print(i)
}
x
}
z=MH(10,99999)
z=z[-10000]
a=seq(-100,100,0.2)

plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))

Metropolis Hasting算法的更多相关文章

  1. MCMC: The Metropolis Sampler

    本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\) ...

  2. 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)

    从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...

  3. 机器学习 —— 概率图模型(Homework: MCMC)

    除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果 ...

  4. 蒙特卡洛马尔科夫链(MCMC)

    蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明: ...

  5. MCMC: The Metropolis-Hastings Sampler

    本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布 ...

  6. [转] - MC、MC、MCMC简述

    贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...

  7. MC, MCMC, Gibbs采样 原理&实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...

  8. MC, MCMC, Gibbs採样 原理&amp;实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个样 ...

  9. MCMC采样理论的一点知识

    看了好多相关的知识,大致了解了一下马尔可夫链-蒙特卡罗采样理论,有必要记来下来. 蒙特卡罗积分:(来自:http://blog.csdn.net/itplus/article/details/1916 ...

随机推荐

  1. linux下java调用.so动态库方法2: JNA

    摘自:http://blog.csdn.net/todorovchen/article/details/21319033 另请参见: http://blog.sina.com.cn/s/blog_8c ...

  2. HibernateTemplate和HibernateDaoSupport

    Spring整合Hibernate后,为Hibernate的DAO提供了两个工具类:HibernateTemplate和HibernateDaoSupport HibernateTemplateHib ...

  3. UVA10199- Tourist Guide(割点)

    题目链接 题意: 给出一张无向图,找出割点,字典序输出割点的名字. 思路:简单的割点的求解,用map映射.easy输出. 代码: #include <iostream> #include ...

  4. AlertDialog详解

    参考地址:http://blog.csdn.net/woaieillen/article/details/7378324 1.弹出提示框 new AlertDialog.Builder(LoginAc ...

  5. java使用注解和反射打造一个简单的jdbc工具类

    a simple jdbc tools 如有转载和引用,请注明出处,谢谢 1. 定义我们需要的注解 要想实现对数据库的操作,我们必须知道数据表名以及表中的字段名称以及类型,正如hibernate 使用 ...

  6. 转:C#: static关键字的作用

    tatic意思是静态,可以修饰类.字段.属性.方法 标记为static的就不用创建实例对象调用了,可以通过类名直接点出来 static三种用法: 1.用于变量前,表示每次重新使用该变量所在方法.类或自 ...

  7. Spring-----7、bean实例的创建方式及依赖配置

    转载自:http://blog.csdn.net/hekewangzi/article/details/45648579

  8. CSS 垂直居中5种方法

    利用 CSS 来实现对象的垂直居中有许多不同的方法,比较难的是选择那个正确的方法.我下面说明一下我看到的好的方法和怎么来创建一个好的居中网站. 使用 CSS 实现垂直居中并不容易.有些方法在一些浏览器 ...

  9. Ubuntu第一次使用调教教程

    Ubuntu第一次使用调教教程 Ubuntu不允许root用户登录,这让人很蛋疼.下面的方法就是让Ubuntu接受以root身份登录.此外,ubuntu默认没有安装ssh的,所以不能进行ssh远程登录 ...

  10. 动态链接库的生成(dll)和 动态链接库隐式and显式调用

    一.构建动态链接库(dll.dll dll.lib dll.h) 说明: .dll 是在执行程序是调用  .lib 是在连接程序是调用  .h是在编译程序时调用 1.头文件(声明导入函数):_decl ...