Metropolis Hasting Algorithm:

MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样。主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度。它的优点,不用多说,自然是能够对付数学形式复杂的概率密度。有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了。

今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄。即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问题不同对待,多试验几次。当然你也能够始终选择“理想”參数。

还是拿上次的混合高斯分布来做模拟,模拟次数为500000次的时候,概率分布逼近的程度例如以下图。尽管几个明显的"峰"已经出来了,可是数值上还是 有非常大差异的。预计是我的漂移方差没有选好。感觉还是inverse sampling好用,迭代次数不用非常多,就能够达到相当的逼近程度。

试了一下MH算法,

R Code:

p=function(x,u1,sig1,u2,sig2){
(1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
}

MH=function(x0,n){
x=NULL
x[1] = x0
for (i in 1:n){
  x_can= x[i]+rnorm(1,0,3.25)
  d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
  alpha= min(1,d)
  u=runif(1,0,1)
    if (u<alpha){
    x[i+1]=x_can}
    else{
      x[i+1]=x[i]
     }
   if (round(i/100)==i/100) print(i)
}
x
}
z=MH(10,99999)
z=z[-10000]
a=seq(-100,100,0.2)

plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))

Metropolis Hasting算法的更多相关文章

  1. MCMC: The Metropolis Sampler

    本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\) ...

  2. 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)

    从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...

  3. 机器学习 —— 概率图模型(Homework: MCMC)

    除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果 ...

  4. 蒙特卡洛马尔科夫链(MCMC)

    蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明: ...

  5. MCMC: The Metropolis-Hastings Sampler

    本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布 ...

  6. [转] - MC、MC、MCMC简述

    贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...

  7. MC, MCMC, Gibbs采样 原理&实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...

  8. MC, MCMC, Gibbs採样 原理&amp;实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个样 ...

  9. MCMC采样理论的一点知识

    看了好多相关的知识,大致了解了一下马尔可夫链-蒙特卡罗采样理论,有必要记来下来. 蒙特卡罗积分:(来自:http://blog.csdn.net/itplus/article/details/1916 ...

随机推荐

  1. HDU3994(Folyd + 期望概率)

    Mission Impossible Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  2. html5 laboratory - drawing in the canvas

    html5 laboratory - drawing in the canvas Creating a bar chart with canvas 21st February 2010 The exp ...

  3. IOS 下雪动画修改版本

    #define SNOW_IMAGENAME @"snow" #define IMAGE_X arc4random()%(int)Main_Screen_Width #define ...

  4. android createbitmap函数内存溢出,求解怎样进行处理out of memory溢出问题

    android createbitmap函数内存溢出,求解怎样进行处理out of memory溢出问题 android createbitmap函数内存溢出,求解怎样进行处理out of memor ...

  5. Android 的权限设置大全

    android.permission.ACCESS_CHECKIN_PROPERTIES //同意读写訪问"properties"表在checkin数据库中.改值可以改动上传 an ...

  6. 【set&&sstream||floyed判环算法】【UVa 11549】Calculator Conundrum

    CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bored ...

  7. stagefright框架(六)-Audio Playback的流程

    到目前为止,我们都只着重在video处理的部分,对于audio却只字未提.这篇文章将会开始audio处理的流程. Stagefright中关于audio的部分是交由AudioPlayer来处理,它是在 ...

  8. 移动平台前端开发总结(针对iphone,Android等手机)

    移动平台前端开发是指针对高端智能手机(如Iphone.Android)做站点适配也就是WebApp,并非是针对普通手机开发Wap 2.0,所以在阅读本篇文章以前,你需要对webkit内核的浏览器有一定 ...

  9. 伪元素”:after” , “:before"

    伪元素就是源码html中不存在,而视觉上又存在的元素     简单用法: blockquote:before {      content: open-quote;      // 其他样式 } // ...

  10. VC++深入详解读书笔记-第七章对话框

    1.在MFC中,所有的控件类都是由CWnd类派生来的,因此,控件实际上也是窗口. 2. 3.对话框的种类 模态对话框 模态对话框是指当其显示时,程序会暂时执行,直到关闭这个模态对话框后,才能继续执行程 ...