Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序

TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则

  1. 某个词或短语在一篇文章中出现的次数越多,越相关
  2. 整个文档集合中包含某个词的文档数量越少,这个词越重要

所以一个term的TF-IDF相关性等于 TF * IDF

这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用,显然这并不是完全正确的。并不能有效地反映单词的重要程度和特征词的分布情况,比如说搜索web文档的时候,处于HTML不同结构的特征词中对文章内容的反映程度不同,应该有不同的权重

TF-IDF的优点是算法简单,运算速度很快

Lucene为了提高可编程行,在上述规则做了一些扩充,就是加入一些编程接口,对不同的查询做了权重归一化处理,但是核心公式还是TF * IDF

Lucene算法公式如下

score(q,d) = coord(q,d) · queryNorm(q) · ∑ ( tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d) )

  • tf(t in d ), = frequency½
  • idf(t) = 1 +log(文档总数/(包含t的文档数+1))
  • coord(q,d) 评分因子,。越多的查询项在一个文档中,说明些文档的匹配程序越高,比如说,查询"A B C",那么同时包含A/B/C3个词的文档 是3分,只包含A/B的文档是2分,coord可以在query中关掉的
  • queryNorm(q)查询的标准查询,使不同查询之间可以比较
  • t.getBoost() 和 norm(t,d) 都是提供的可编程接口,可以调整 field/文档/query项 的权重

各种编程插口显得很麻烦,可以不使用,所以我们可以把Lucence的算分公式进行简化

score(q,d) = coord(q,d) · ∑ ( tf(t in d) · idf(t)2 )

结论

  1. TF-IDF 算法是以 term为基础的,term就是最小的分词单元,这说明分词算法对基于统计的ranking无比重要,如果你对中文用单字切分,那么就会损失所有的语义相关性,这个时候 搜索只是当做一种高效的全文匹配方法
  2. 按照规则1 某个词或短语在一篇文章中出现的次数越多,越相关 一定要去除掉stop word,因为这些词出现的频率太高了,也就是TF的值很大,会严重干扰算分结果
  3. TF和IDF在生成索引的时候,就会计算出来: TF会和DocID保存在一起(docIDs的一部分),而IDF= 总文档数 / 当前term拥有的docIDs 长度

本文地址: http://lutaf.com/210.htm 鲁塔弗原创文章,欢迎转载,请附带原文链接

Lucene TF-IDF 相关性算分公式(转)的更多相关文章

  1. Solr相似度算法一:Lucene TF-IDF 相关性算分公式

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  2. Lucene TF-IDF 相关性算分公式

    转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF- ...

  3. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  4. 关于使用Filter降低Lucene tf idf打分计算的调研

    将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都须要自己写filter.包含TermFilter,ExactPhraseFilter,Con ...

  5. Elasticsearch从入门到放弃:浅谈算分

    今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查 ...

  6. 影响ES相关度算分的因素

    相关性算分 指文档与查询语句间的相关度,通过倒排索引可以获取与查询语句相匹配的文档列表   如何将最符合用户查询需求的文档放到前列呢? 本质问题是一个排序的问题,排序的依据是相关性算分,确定倒排索引哪 ...

  7. tf idf公式及sklearn中TfidfVectorizer

    在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的 ...

  8. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  9. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

随机推荐

  1. [转]精通JS正则表达式

    原文路径:http://www.jb51.net/article/25313.htm 正则表达式可以: •测试字符串的某个模式.例如,可以对一个输入字符串进行测试,看在该字符串是否存在一个电话号码模式 ...

  2. C++11新特性 lambda表达式

    C++11 添加了了一个名为lambda表达式的功能,可以用于添加匿名函数 语法: [capture_block](parameter) mutable exception_specification ...

  3. mysql A表部分记录复制到B表

    [不定时更新] 1.将一张表中部分记录的一或多个字段复制到另一张表中: 表A: 表B: 执行SQL: insert into B(f_userId,f_nickname) select f_telep ...

  4. JavaScript_Html5_LocalStorage项目demo

    项目中localStorage实用 项目中h5本地存储的一个小实用,本意使用cookie,但发现chrome调试被禁用,便用了localStorage. 此需求是一贴吧搜索页,在新用户第一次点击搜索框 ...

  5. 劳动节脑洞大开!利用Debug API 获取 加壳客户端的MD5值

    系统 : Windows xp 程序 : 某游戏客户端 程序下载地址 :不提供 要求 : 远程注入 & 获取MD5值 使用工具 : vc++6.0 & OD 案例说明: 该游戏客户端对 ...

  6. firefox中flash经常崩溃

    建议: 1.安装flashblck插件 2.添加配置文件 在C:\Windows\SysWOW64\Macromed\Flash添加mmc.cfg. mmc.cfg的内容: SlientAutoUpd ...

  7. iOS开发中常用的单例

    定义:一个类的对象,无论在何时创建.无论创建多少次,创建出来的对象都是同一个对象. 使用场景:当有一些数据需要共享给别的类的时候,就可以把这些数据保存在单例对象中.   关键代码: + (instan ...

  8. Ubuntu16.04 LTS 下安装 Android Studio 2.2.2 步骤

    下载 Android SDK,官网:www.android.com 我相信很多人跟我一样,进不去.Android Studio 中文官网 www.android-studio.org 进去下载, 在终 ...

  9. iOS开源项目MobileProject功能点介绍

    一:MobileProject简介 MobileProject项目是一个以MVC模式搭建的开源功能集合,基于Objective-C上面进行编写,意在解决新项目对于常见功能模块的重复开发,MobileP ...

  10. Java中的垃圾回收

    关于垃圾回收,主要是两个步骤: 垃圾对象的判断 垃圾对象的回收 垃圾对象的判断方法 引用计数算法:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何 ...