题目链接  Hrbust 2363

来源  “科林明伦杯”哈尔滨理工大学第七届程序设计团队赛 Problem J

题意  给出一个长度为$1e6$的字符串,求最小可重回文子串覆盖数量

首先Manacher预处理出以$s[i]$为首字母的回文子串的长度的最大值

然后求出包含$s[i]$的回文子串的能延伸到的最左端的位置

DP即可

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 2e6 + 10; char a[N], s[N];
int dp[N], c[N], d[N], f[N], g[N];
int T, n, m, r, p, cnt, ans, now, ca = 0;
vector <int> v[N]; void up(int &x, int y){ if (x < y) x = y;} int main(){ scanf("%d", &T);
while (T--){
scanf("%s", a + 1);
n = strlen(a + 1);
rep(i, 1, n) s[i << 1] = a[i], s[i << 1 | 1] = '#';
s[0] = '$', s[1] = '#', s[m = (n + 1) << 1] = '@';
r = 0, p = 0, f[1] = 1;
rep(i, 2, m - 1){
for (f[i] = r > i ? min(r - i, f[p * 2 - i]) : 1; s[i - f[i]] == s[i + f[i]]; f[i]++);
if (i + f[i] > r) r = i + f[i], p = i;
} rep(i, 0, m) g[i] = 0;
rep(i, 2, m - 1) up(g[i - f[i] + 1], i + 1);
rep(i, 1, m) up(g[i], g[i - 1]);
ans = 0; cnt = 0;
for (int i = 2; i < m; i += 2){
++cnt;
c[cnt] = g[i] - i;
} rep(i, 1, n) c[i] = i + c[i] - 1;
rep(i, 1, n) d[i] = i;
rep(i, 1, n) d[c[i]] = min(d[c[i]], i);
dec(i, n - 1, 1) d[i] = min(d[i], d[i + 1]);
rep(i, 0, n + 1) dp[i] = 1e9; dp[0] = 0;
rep(i, 1, n) dp[i] = min(dp[i], dp[d[i] - 1] + 1);
printf("Case #%d: %d\n", ++ca, dp[n]);
} return 0;
}

  

Hrbust 2363 Symmys (Manacher + DP)的更多相关文章

  1. 1089 最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa ...

  2. ACdreamOJ 1154 Lowbit Sum (数字dp)

    ACdreamOJ 1154 Lowbit Sum (数位dp) ACM 题目地址:pid=1154" target="_blank" style="color ...

  3. 「SDOI2016」储能表(数位dp)

    「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 ...

  4. 【HDU1693】Eat the Trees(插头dp)

    [HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...

  5. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  6. 【BZOJ4712】洪水(动态dp)

    [BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...

  7. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  8. 【POJ2411】Mondriaan's Dream(轮廓线DP)

    [POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...

  9. 51Nod 1089:最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法)  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaa ...

随机推荐

  1. http--一次完整的HTTP事务是怎样一个过程?【转】

    一次完整的HTTP事务是怎样一个过程? 如有收获请给作者点赞 --> 原文链接 声明:本文章中的说法仅是个人理解总结,不一定完全正确,但是可以有助于理解. 当我们在浏览器的地址栏输入 www.l ...

  2. 如何提高STM32的学习效率

    时间如何安排 做任何事情前,习惯写一个计划——要在一个月内上手STM32! 没有计划的日子,每天早上醒来睁开眼睛,却不知道自己今天要干啥 计划和时间安排: 第一阶段:找感觉——谈及STM32,立即反应 ...

  3. 1250 Fibonacci数列(矩阵乘法快速幂)

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 定义:f0=f1=1, f ...

  4. Java开发微信公众号(三)---微信服务器请求消息,响应消息,事件消息以及工具处理类的封装

    在前面几篇文章我们讲了微信公众号环境的配置 和微信公众号服务的接入,接下来我们来说一下微信服务器请求消息,响应消息以及事件消息的相关内容,首先我们来分析一下消息类型和返回xml格式及实体类的封装. ( ...

  5. PAT——乙级1016

    乙级PAT的1016 乙级的题相对比较简单,我也是主要联系写代码的格式,而不是联系算法. 1016 部分A+B (15 point(s)) 正整数 A 的“D​A​​(为 1 位整数)部分”定义为由  ...

  6. jquery版手风琴效果

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  7. C#,一种简单的方式实现滚动鼠标缩放图片,平移

    1.缩放 private void ImageShow_Load(object sender, EventArgs e) { pictureBox1.Load(@"E:\SQ1.jpg&qu ...

  8. linux系统初始化——启动脚本是如何工作的

    启动脚本是如何工作的 Linux 使用的是基于 运行级(run-levels) 概念的称为 SysVinit 的专用启动工具.它在不同的系统上可能是完全不一样的,所以不能认为一个脚本在某个 Linux ...

  9. aplusb 数论

    题目描述 SillyHook 要给小朋友出题了,他想,对于初学者,第一题肯定是a+b啊, 但当他出完数据后神奇地发现.in 不见了,只留下了一些.out,他想还原.in,但 情况实在太多了,于是他想要 ...

  10. 【09】react 之 表单组件

    不太清楚有多少初学React的同学和博主当时一样,在看完React的生命周期.数据流之后觉得已经上手了,甩开文档啪啪啪的开始敲了起来.结果...居然被一个input标签给教做人了. 故事是这样的:首先 ...