How far away ?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9097    Accepted Submission(s): 3171

Problem Description
There
are n houses in the village and some bidirectional roads connecting
them. Every day peole always like to ask like this "How far is it if I
want to go from house A to house B"? Usually it hard to answer. But
luckily int this village the answer is always unique, since the roads
are built in the way that there is a unique simple path("simple" means
you can't visit a place twice) between every two houses. Yout task is to
answer all these curious people.
 
Input
First line is a single integer T(T<=10), indicating the number of test cases.
  For
each test case,in the first line there are two numbers
n(2<=n<=40000) and m (1<=m<=200),the number of houses and
the number of queries. The following n-1 lines each consisting three
numbers i,j,k, separated bu a single space, meaning that there is a road
connecting house i and house j,with length k(0<k<=40000).The
houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
 
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
 
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
2 2
1 2 100
1 2
2 1
 
Sample Output
10
25
100
100
 
Source

描述:

已知在一个村庄中有n个房子,一些双向的道路把这些房子连接了起来。但是每天都有人询问诸如“如果我想从A房子走到B房子需要走多远的距离?”     的问题。幸运的是,在这个村庄中这个答案总是唯一的,因为任意两个房子之间仅存在一条简单路径(路径上的地点只能访问一次)。你现在的任务是回答这些人的询问。

输入:

输入一个整数n表示房子总数,一个整数m表示询问的总数(n<=40000,m<=200),接下来的n-1行输入n-1条道路的状况,每行3个整数a,b,c表示a房子和b房子之间有一条长度为c的双向道路,接下来输入m行询问,每行两个整数a,b要求给出a房子和b房子的最小距离。

思路: 可以用LCA算法计算出任意两个房子u,v的最近公共祖先lca(u,v)

假设d[]数组为每个房子节点到根节点的距离,那么有

dis(u, v) = d[u] + d[v] – 2*d[lca(u, v)]

在线算法

    /*
这个版本的在线算法比自创的好看简洁多了,可以当模板,效率不高在于算法其本身的原因;
据说离线算法要快不少。
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std; const int NN=; int n,rt;
vector<pair<int,int> > edge[NN]; int depth=;
int bn=,b[NN*]; //深度序列
int f[NN*]; //对应深度序列中的结点编号
int p[NN]; //结点在深度序列中的首位置
int dis[NN]; //结点到根的距离
void dfs(int u,int fa)
{
int tmp=++depth;
b[++bn]=tmp; f[tmp]=u; p[u]=bn;
for (int i=; i<edge[u].size(); i++)
{
int v=edge[u][i].first;
if (v==fa) continue;
dis[v]=dis[u]+edge[u][i].second;
dfs(v,u);
b[++bn]=tmp;
}
} int dp[NN*][];
void rmq_init(int n) //以深度序列做rmq
{
for (int i=; i<=n; i++) dp[i][]=b[i];
int m=floor(log(n*1.0)/log(2.0));
for (int j=; j<=m; j++)
for (int i=; i<=n-(<<j)+; i++)
dp[i][j]=min(dp[i][j-],dp[i+(<<(j-))][j-]);
}
int rmq(int l,int r)
{
int k=floor(log((r-l+)*1.0)/log(2.0));
return min(dp[l][k],dp[r-(<<k)+][k]);
} int lca(int a,int b)
{
if (p[a]>p[b]) swap(a,b);
int k=rmq(p[a],p[b]);
return f[k];
} int main()
{
int m,u,v,w;
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for (int i=; i<=n; i++) edge[i].clear();
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back(make_pair(v,w));
edge[v].push_back(make_pair(u,w));
}
rt=; dis[rt]=;
dfs(,);
rmq_init(bn); while (m--)
{
scanf("%d%d",&u,&v);
printf("%d\n",dis[u]+dis[v]-*dis[lca(u,v)]);
} }
return ;
}

离线算法

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std; const int NN=50010; int n,m;
vector<pair<int,int> > edge[NN],qe[NN];
vector<int> q1,q2; int p[NN];
int find(int x)
{
    if (p[x]!=x) p[x]=find(p[x]);
    return p[x];
} int sum=0,ans[NN],dis[NN];
bool vis[NN]={0};
void lca(int u,int fa)
{
    p[u]=u;
    for (int i=0; i<edge[u].size(); i++)
    {
        int v=edge[u][i].first;
        if (v==fa) continue;
        dis[v]=dis[u]+edge[u][i].second;
        lca(v,u);
        p[v]=u;
    }
    vis[u]=true;
    if (sum==m) return;
    for (int i=0; i<qe[u].size(); i++)
    {
        int v=qe[u][i].first;
        if (vis[v])
            ans[qe[u][i].second]=dis[u]+dis[v]-2*dis[find(v)];
    }
} int main()
{
    int u,v,w;     int t;
    scanf("%d",&t);
    while(t--){
    scanf("%d%d",&n,&m);
    for (int i=1; i<=n; i++)
    {
        edge[i].clear();
    }
    for (int i=1; i<n; i++)
    {
        scanf("%d%d%d",&u,&v,&w);
        edge[u].push_back(make_pair(v,w));
        edge[v].push_back(make_pair(u,w));
    }     for (int i=0; i<m; i++)
    {
        scanf("%d%d",&u,&v);
        qe[u].push_back(make_pair(v,i));
        qe[v].push_back(make_pair(u,i));
        ans[i]=0;
    }
    dis[1]=0;
    lca(1,0);
    for (int i=0; i<m; i++) printf("%d\n",ans[i]);
    }
    return 0;
}
Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 22116   Accepted: 11566

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

//这个tarjan算法使用了并查集+dfs的操作。中间的那个并查集操作的作用,只是将已经查找过的节点捆成一个集合然后再指向一个公共的祖先。另外,如果要查询LCA(a,b),必须把(a,b)和(b,a)都加入邻接表。
//
//O(n+Q) #include <iostream>
#include <cstdio>
#include <cstring>
#include <vector> using namespace std; #define MAXN 10001 int n,fa[MAXN];
int rank[MAXN];
int indegree[MAXN];
int vis[MAXN];
vector<int> hash[MAXN],Qes[MAXN];
int ances[MAXN];//祖先 void init(int n)
{
for(int i=;i<=n;i++)
{
fa[i]=i;
rank[i]=;
indegree[i]=;
vis[i]=;
ances[i]=;
hash[i].clear();
Qes[i].clear();
}
} int find(int x)
{
if(x != fa[x])
fa[x]=find(fa[x]);
return fa[x];
} void unio(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx==fy) return ;
if(rank[fy]<rank[fx])
fa[fy]=fx;
else
{
fa[fx]=fy;
if(rank[fx]==rank[fy])
rank[fy]++;
}
} void Tarjan(int u)
{
ances[u]=u;
int i,size = hash[u].size();
for(i=;i<size;i++)
{
Tarjan(hash[u][i]);//递归处理儿子
unio(u,hash[u][i]);//将儿子父亲合并,合并时会将儿子的父亲改为u
ances[find(u)]=u;//此时find(u)仍为u,即
}
vis[u]=; //查询
size = Qes[u].size();
for(i=;i<size;i++)
{
if(vis[Qes[u][i]]==)//即查询的另一个结点开始已经访问过,当前的u在此回合访问。
{
printf("%d\n",ances[find(Qes[u][i])]);//由于递归,此时还是在u
return;
}
}
} int main()
{
int t;
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init(n);
int s,d;
for(i=;i<=n-;i++)
{
scanf("%d%d",&s,&d);
hash[s].push_back(d);
indegree[d]++;
}
scanf("%d%d",&s,&d);
// if(s==d)//如果需要计数的时候注意
// ans[d]++;
// else
// {
Qes[s].push_back(d);
Qes[d].push_back(s);
// }
for(j=;j<=n;j++)
{
if(indegree[j]==)
{
Tarjan(j);
break;
}
}
}
return ;
}

hdu2586&&poj1330 求点间最短距&&最近公共祖先(在线&&离线处理):::可做模板的更多相关文章

  1. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  2. HDU 1330 Nearest Common Ancestors(求两个点的近期公共祖先)

    题目链接:id=1330">传送门 在线算法: #include <iostream> #include <cstdio> #include <cstri ...

  3. HDU2586.How far away ?——近期公共祖先(离线Tarjan)

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 给定一棵带权有根树,对于m个查询(u,v),求得u到v之间的最短距离 那么仅仅要求得LCA(u,v),di ...

  4. POJ 1330 Nearest Common Ancestors(求最近的公共祖先)

    题意:给出一棵树,再给出两个节点a.b,求离它们最近的公共祖先.方法一: 先用vector存储某节点的子节点,fa数组存储某节点的父节点,最后找出fa[root]=0的根节点root.      之后 ...

  5. LCA 在线倍增法 求最近公共祖先

    第一步:建树  这个就不说了 第二部:分为两步  分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...

  6. 倍增法求lca(最近公共祖先)

    倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...

  7. POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)

    题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...

  8. 连通分量模板:tarjan: 求割点 &amp;&amp; 桥 &amp;&amp; 缩点 &amp;&amp; 强连通分量 &amp;&amp; 双连通分量 &amp;&amp; LCA(近期公共祖先)

    PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的 ...

  9. 求最近公共祖先(LCA)的各种算法

    水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深 ...

随机推荐

  1. linux 命令——10 cat (转)

    cat命令的用途是连接文件或标准输入并打印.这个命令常用来显示文件内容,或者将几个文件连接起来显示,或者从标准输入读取内容并显示,它常与重定向符号配合使用. 1.命令格式: cat [选项] [文件] ...

  2. IIS6.0开启gzip压缩

    双击IIS服务器,右键点击网站,点击属性,然后点击服务,我们看到HTTP压缩,然后在压缩应用程序文件,压缩静态文件中打钩,然后点击确定,第一步就完成了   然后我们右键点击web服务扩展,点击添加一个 ...

  3. 20.JSON

    JSON是javascript的一个子集,利用js中的一些儿模式来表示结构化数据.不是只有javascript才使用JSON,JSON是一种数据格式,很多编程语言都有针对JSON的解析器和序列化器. ...

  4. python_69_内置函数1

    #abs()取绝对值 ''' all(iterable) Return True if all elements of the iterable are true (or if the iterabl ...

  5. STM32启动流程

    启动文件主要工作: . 设置堆栈指针SP=_initial_sp . 设置PC指针=Reset_Handler . 配置系统时钟 . 配置外部SRAM用于程序变量等数据存储(可选) . 调用C库中的_ ...

  6. Vue源码学习一 ———— Vue项目目录

    Vue 目录结构 可以在 github 上通过这款 Chrome 插件 octotree 查看Vue的文件目录.也可以克隆到本地.. Vue 是如何规划目录的 scripts ------------ ...

  7. linux分区之ext2,ext3,ext4,gpt

    linux分区之ext2,ext3,ext4,gpt 2013-07-10 12:00:24 标签:ext3 gpt 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明 ...

  8. 1045: [HAOI2008] 糖果传递

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4897  Solved: 2457[Submit][Status][Discuss] Descript ...

  9. javascript oo实现

    很久很久以前,我还是个phper,第一次接触javascript觉得好神奇.跟传统的oo类概念差别很大.记得刚毕业面试,如何在javascript里面实现class一直是很热门的面试题,当前面试百度就 ...

  10. SQL Server字符串聚合拼接办法

    数据范例如下: 要得到的结果目标,获取type相同的所有names拼接在一起的字符串: SqlServer并没有一个直接拼接字符串的函数,下面所提到的方法,只是日常的开发中自己个人用到的一些思路,仅供 ...