HDU 4625. JZPTREE
题目简述:给定$n \leq 50000$个节点的数,每条边的长度为$1$,对每个节点$u$,求
$$ E_u = \sum_{v=1}^n (d(u, v))^k, $$
其中$d(u, v)$是节点$u$和节点$v$的距离,而$k \leq 500$是一个常数。
解1:
由斯特林数的性质,我们注意到
$$ x^n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}. $$
从而,
$$ E_u = \sum_{v=1}^n (d(u, v))^k = \sum_{i=0}^k \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{v=1}^n (d(u, v))^{\underline{i}}. $$
为此,我们定义
$$f[u][k] = \sum_{v \in T_u} (d(u, v))^{\underline{k}},$$
其中$T_u$表示以$u$为根节点的子树。令$\text{son}(u)$表示节点$u$的所有儿子节点的集合,并注意到$(x+1)^{\underline{k}} = x^{\underline{k}}+kx^{\underline{k-1}}$,则
$$
\begin{aligned}
f[u][k]
& = \sum_{v \in \text{son}(u)} \sum_{w \in T_v} (d(u, w))^{\underline{k}} \\
& = \sum_{v \in \text{son}(u)} \sum_{w \in T_v} (d(v, w)+1)^{\underline{k}} \\
& = \sum_{v \in \text{son}(u)} \sum_{w \in T_v} \Big( (d(v, w))^{\underline{k}}+k (d(v, w))^{\underline{k-1}} \Big) \\
& = \sum_{v \in \text{son}(u)} \Big( f[v][k]+k f[v][k-1] \Big)
\end{aligned}
$$
两遍DFS即可求出所有$E_u$,从而可在$O(nk)$的复杂度内解决。
#include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef unsigned long long ull;
typedef double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pdd; #define X first
#define Y second //#include <boost/unordered_map.hpp>
//using namespace boost; /*
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> rbtree;
rbtree T;
*/ namespace io{
const int L = ( << ) + ; char buf[L], *S , *T, c; char getchar() {
if(__builtin_expect(S == T, )) {
T = (S = buf) + fread(buf, , L, stdin);
return (S == T ? EOF : *S++);
}
return *S++;
} int inp() {
int x = , f = ; char ch;
for(ch = getchar(); !isdigit(ch); ch = getchar())
if(ch == '-') f = -;
for(; isdigit(ch); x = x * + ch - '', ch = getchar());
return x * f;
} unsigned inpu()
{
unsigned x = ; char ch;
for(ch = getchar(); !isdigit(ch); ch = getchar());
for(; isdigit(ch); x = x * + ch - '', ch = getchar());
return x;
} ll inp_ll() {
ll x = ; int f = ; char ch;
for(ch = getchar(); !isdigit(ch); ch = getchar())
if(ch == '-') f = -;
for(; isdigit(ch); x = x * + ch - '', ch = getchar());
return x * f;
} char B[], *outs=B+, *outr=B+;
template<class T>
inline void print(register T a,register char x=){
if(x) *--outs = x, x = ; if(!a)*--outs = '';
else
while(a)
*--outs = (a % ) + , a /= ; if(x)
*--outs = x; fwrite(outs, outr - outs , , stdout);
outs = outr;
}
}; using io :: print;
using io :: inp;
using io :: inpu;
using io :: inp_ll; using i32 = int;
using i64 = long long;
using u8 = unsigned char;
using u32 = unsigned;
using u64 = unsigned long long;
using f64 = double;
using f80 = long double; ll power(ll a, ll b, ll p)
{
if (!b) return ;
ll t = power(a, b/, p);
t = t*t%p;
if (b&) t = t*a%p;
return t;
} ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (b == )
{
x = ;
y = ;
return a;
}
ll px, py;
ll d = exgcd(b, a%b, px, py);
x = py;
y = px-a/b*py;
return d;
} template<class T>
inline void freshmin(T &a, const T &b)
{
if (a > b) a = b;
} template<class T>
inline void freshmax(T &a, const T &b)
{
if (a < b) a = b;
} const int MAXN = ;
const int MAXK = ;
const int MOD = ;
const f80 MI = f80()/MOD;
const int INF = ; int n, k;
int S[MAXK][MAXK]; vector<int> v[MAXN];
int f[MAXN][MAXK], g[MAXN][MAXK]; void dfs1(int x, int p)
{
f[x][] = ;
for (int i = ; i <= k; ++ i)
f[x][i] = ;
for (auto y : v[x])
{
if (y == p) continue;
dfs1(y, x);
(f[x][] += f[y][]) %= MOD;
for (int i = ; i <= k; ++ i)
(f[x][i] += f[y][i]+i*f[y][i-]) %= MOD;
}
} void dfs2(int x, int p)
{
if (!p)
{
for (int i = ; i <= k; ++ i)
g[x][i] = f[x][i];
}
for (auto y : v[x])
{
if (y == p) continue;
g[y][] = g[x][];
for (int i = ; i <= k; ++ i)
{
int g1 = (g[x][i]-(f[y][i]+i*f[y][i-]))%MOD;
int g2 = (g[x][i-]-(f[y][i-]+(i-)*(i- >= ? f[y][i-] : )))%MOD;
g[y][i] = (f[y][i]+g1+i*g2)%MOD;
}
dfs2(y, x);
}
} int main()
{ S[][] = ;
for (int i = ; i <= ; ++ i)
for (int j = ; j <= i; ++ j)
S[i][j] = (S[i-][j-]+S[i-][j]*j)%MOD; for (int T = inp(); T --; )
{
n = inp();
k = inp();
for (int i = ; i <= n; ++ i)
v[i].clear();
for (int i = ; i < n; ++ i)
{
int x = inp();
int y = inp();
v[x].push_back(y);
v[y].push_back(x);
}
dfs1(, );
dfs2(, );
for (int x = ; x <= n; ++ x)
{
int ret = ;
for (int i = ; i <= k; ++ i)
(ret += S[k][i]*g[x][i]) %= MOD;
printf("%d\n", (ret+MOD)%MOD);
}
} return ;
}
解2:
我们用另一个斯特林数的性质:
$$ x^n = \sum_{k=0}^n k! \begin{Bmatrix} n \\ k \end{Bmatrix} \binom{x}{k}. $$
从而,
$$ E_u = \sum_{v=1}^n (d(u, v))^k = \sum_{i=0}^k i! \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{v=1}^n \binom{d(u, v)}{i}. $$
为此,我们定义
$$f[u][k] = \sum_{v \in T_u} \binom{d(u, v)}{k},$$
其中$T_u$表示以$u$为根节点的子树。令$\text{son}(u)$表示节点$u$的所有儿子节点的集合,则
$$
\begin{aligned}
f[u][k]
& = \sum_{v \in \text{son}(u)} \sum_{w \in T_v} \binom{d(u, w)}{k} \\
& = \sum_{v \in \text{son}(u)} \sum_{w \in T_v} \binom{d(v, w)+1}{k} \\
& = \sum_{v \in \text{son}(u)} \sum_{w \in T_v} \left( \binom{d(v, w)}{k} + \binom{d(v, w)}{k-1} \right) \\
& = \sum_{v \in \text{son}(u)} \Big( f[v][k]+f[v][k-1] \Big)
\end{aligned}
$$
两遍DFS即可求出所有$E_u$,从而可在$O(nk)$的复杂度内解决。
#include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef unsigned long long ull;
typedef double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pdd; #define X first
#define Y second //#include <boost/unordered_map.hpp>
//using namespace boost; /*
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> rbtree;
rbtree T;
*/ namespace io{
const int L = ( << ) + ; char buf[L], *S , *T, c; char getchar() {
if(__builtin_expect(S == T, )) {
T = (S = buf) + fread(buf, , L, stdin);
return (S == T ? EOF : *S++);
}
return *S++;
} int inp() {
int x = , f = ; char ch;
for(ch = getchar(); !isdigit(ch); ch = getchar())
if(ch == '-') f = -;
for(; isdigit(ch); x = x * + ch - '', ch = getchar());
return x * f;
} unsigned inpu()
{
unsigned x = ; char ch;
for(ch = getchar(); !isdigit(ch); ch = getchar());
for(; isdigit(ch); x = x * + ch - '', ch = getchar());
return x;
} ll inp_ll() {
ll x = ; int f = ; char ch;
for(ch = getchar(); !isdigit(ch); ch = getchar())
if(ch == '-') f = -;
for(; isdigit(ch); x = x * + ch - '', ch = getchar());
return x * f;
} char B[], *outs=B+, *outr=B+;
template<class T>
inline void print(register T a,register char x=){
if(x) *--outs = x, x = ; if(!a)*--outs = '';
else
while(a)
*--outs = (a % ) + , a /= ; if(x)
*--outs = x; fwrite(outs, outr - outs , , stdout);
outs = outr;
}
}; using io :: print;
using io :: inp;
using io :: inpu;
using io :: inp_ll; using i32 = int;
using i64 = long long;
using u8 = unsigned char;
using u32 = unsigned;
using u64 = unsigned long long;
using f64 = double;
using f80 = long double; ll power(ll a, ll b, ll p)
{
if (!b) return ;
ll t = power(a, b/, p);
t = t*t%p;
if (b&) t = t*a%p;
return t;
} ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (b == )
{
x = ;
y = ;
return a;
}
ll px, py;
ll d = exgcd(b, a%b, px, py);
x = py;
y = px-a/b*py;
return d;
} template<class T>
inline void freshmin(T &a, const T &b)
{
if (a > b) a = b;
} template<class T>
inline void freshmax(T &a, const T &b)
{
if (a < b) a = b;
} const int MAXN = ;
const int MAXK = ;
const int MOD = ;
const f80 MI = f80()/MOD;
const int INF = ; int n, k;
int S[MAXK][MAXK]; vector<int> v[MAXN];
int f[MAXN][MAXK], g[MAXN][MAXK]; void dfs1(int x, int p)
{
f[x][] = ;
for (int i = ; i <= k; ++ i)
f[x][i] = ;
for (auto y : v[x])
{
if (y == p) continue;
dfs1(y, x);
(f[x][] += f[y][]) %= MOD;
for (int i = ; i <= k; ++ i)
(f[x][i] += f[y][i]+f[y][i-]) %= MOD;
}
} void dfs2(int x, int p)
{
if (!p)
{
for (int i = ; i <= k; ++ i)
g[x][i] = f[x][i];
}
for (auto y : v[x])
{
if (y == p) continue;
g[y][] = g[x][];
for (int i = ; i <= k; ++ i)
{
int g1 = (g[x][i]-(f[y][i]+f[y][i-]))%MOD;
int g2 = (g[x][i-]-(f[y][i-]+(i- >= ? f[y][i-] : )))%MOD;
g[y][i] = (f[y][i]+g1+g2)%MOD;
}
dfs2(y, x);
}
} int main()
{ S[][] = ;
for (int i = ; i <= ; ++ i)
for (int j = ; j <= i; ++ j)
S[i][j] = (S[i-][j-]+S[i-][j]*j)%MOD; for (int T = inp(); T --; )
{
n = inp();
k = inp();
for (int i = ; i <= n; ++ i)
v[i].clear();
for (int i = ; i < n; ++ i)
{
int x = inp();
int y = inp();
v[x].push_back(y);
v[y].push_back(x);
}
dfs1(, );
dfs2(, );
for (int x = ; x <= n; ++ x)
{
int ret = ;
int fact = ;
for (int i = ; i <= k; ++ i)
{
(ret += S[k][i]*fact%MOD*g[x][i]) %= MOD;
(fact *= i+) %= MOD;
}
printf("%d\n", (ret+MOD)%MOD);
}
} return ;
}
HDU 4625. JZPTREE的更多相关文章
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- hdu 4625 Dice(概率DP)
Dice Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- 学习总结:斯特林数( Stirling number )
基本定义 第一类斯特林数:$1 \dots n$的排列中恰好有$k$个环的个数:或是,$n$元置换可分解为$k$个独立的轮换的个数.记作 $$ \begin{bmatrix} n \\ k \end{ ...
- Solution Set - Stirling 数相关杂题
<好多题的题解> 「洛谷 P5408」第一类斯特林数·行 根据结论 \[x^{\overline{n}}=\sum_i{n\brack i}x^i, \] 我们只需要求出 \( ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
随机推荐
- <转> Struct 和 Union区别 以及 对内存对齐方式的说明
转载地址:http://blog.csdn.net/firefly_2002/article/details/7954458 一.Struct 和 Union有下列区别: 1.在存储多个成员信息时,编 ...
- DNS--域名系统 随笔
定义:是一种用于TCP/IP应用程序的分布式数据库.(分布式数据库:指利用高速计算机网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库.分布式数据库的基本思想是将原来集中式数据库中的 ...
- 取得微信用户OpenID
公司需要微信这个平台和用户交流,于是开始研究微信公众平台.微信公众平台分为两种模式,其一是编辑模式,比如用户发什么内容,你可以响应什么内容.另外一种便是开发模式,这个模式功能丰富,不仅仅可以获取到用户 ...
- JAVA Exception处理
原文地址:http://blog.csdn.net/hguisu/article/details/6155636 1. 引子 try…catch…finally恐怕是大家再熟悉不过的语句了,而且感觉用 ...
- servlet 复习笔记
总的说来Servlet的配置包括Servlet的名字,Servlet的类(如果是JSP,就指定JSP文件),初始化参数,启动装入的优先级,servlet的映射,运行的安全设置. 下面举例介绍其配置: ...
- 【python】python版本升级,从2.6.6升级到2.7.13
centos6.5系统自带了2.6.6版本的python,有时候为了项目上的需要,需要将python版本升级到2.7.13,下面介绍了如何进行升级. 说明:python从2.6升级到2.7会引发很多问 ...
- python——进程池
from concurrent.futures import ProcessPoolExecutor import os,random def func(name): print("%s吃了 ...
- Java for LeetCode 127 Word Ladder
Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformatio ...
- gradle 与 gradlew
配置好gradle环境变量后(配置环境变量这里就不说了,可以自行百度),我们就可以在cmd中使用gradle命令了 在cmd中输入: gradle -v 输出如下: 这时说明gradle的环境变量配置 ...
- Python运维编程
Python运维编程 作者:Danbo 2015-10-11 什么是Python,为什么要使用Python? 这个大家自行谷歌,不过看看知乎你就知道Python有多么强大:http://www.zh ...