luogu2597-[ZJOI2012]灾难 && DAG支配树
Description
P2597 [ZJOI2012]灾难 - 洛谷 | 计算机科学教育新生态
Solution
根据题意建图, 新建一个 \(S\) 点, 连向每个没有入边的点.
定义每个点 \(P\) 的支配点为从 \(S\) 到 \(P\) 的任意路径必经的点. 那么题意便为对于每一个点, 求有多少个点以它作为支配点.
考虑建立一棵支配树, 其中除了 \(S\) 之外的点 \(P\) 的父亲 \(\text{fa} (P)\) 表示距离 \(P\) 最近的支配点. 显然 \(\text{fa} (\text{fa} (P))\) 也为 \(P\) 的支配点.
我们先对图拓扑排序.
考虑所有能直接到达点 \(V\) 的点 \(U\), 即存在边 \((U,V)\). 那么 \(\text{fa} (V)\) 显然为所有 \(U\) 在支配树上的 \(\text{lca}\). 之后在支配树上加入边 \((\text{fa} (V), V)\) 即可. 对于 \(\text{lca}\), 可以通过倍增 \(O(\log n)\) 维护.
之后通过在支配树上DP即可求得结果. 同时, 发现支配树和DAG上的拓扑序相同, 可以利用刚才求到的拓扑序直接DP.
时间复杂度 \(O((n+m) \log n)\).
注意必须建立 \(S\)点, 否则如果多个没有入边的点时会死.==
Code
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
const int nsz=65600,msz=1.5e6+50;
int n,ans[nsz];
struct te{int t,pr;}edge[msz];
int hd[nsz],pe=1,in[nsz];
void adde(int f,int t){
edge[++pe]=(te){t,hd[f]};
hd[f]=pe;
++in[t];
}
#define forg(p,i,v) for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t)
int que[nsz],qh=1,qt=0;
int tp[nsz],pt=0;
void gettp(){
// rep(i,1,n)if(in[i]==0)que[++qt]=i;
que[++qt]=n+1;
int u;
while(qh<=qt){
u=que[qh++],tp[++pt]=u;
forg(u,i,v){
--in[v];
if(in[v]==0)que[++qt]=v;
}
}
}
int fa[nsz][20],fa0[nsz],dep[nsz]{-1};
void addfa(int p,int f){
dep[p]=dep[f]+1;
fa[p][0]=f;
rep(i,1,18)fa[p][i]=fa[fa[p][i-1]][i-1];
}
int lca(int a,int b){
if(dep[a]<dep[b])swap(a,b);
repdo(i,18,0){
if(dep[fa[a][i]]<dep[b])continue;
a=fa[a][i];
}
if(a==b)return a;
repdo(i,18,0){
if(fa[a][i]==fa[b][i])continue;
a=fa[a][i],b=fa[b][i];
}
return fa[a][0];
}
void sol(){
rep(i,1,n+1){
int p=tp[i];
if(fa0[p])addfa(p,fa0[p]);
forg(p,j,v){
if(fa0[v]==0)fa0[v]=p;
else fa0[v]=lca(fa0[v],p);
}
}
repdo(i,n+1,2){
int p=tp[i];
ans[fa[p][0]]+=ans[p]+1;
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
int a;
rep(i,1,n){
while(cin>>a,a){
adde(a,i);
}
if(in[i]==0)adde(n+1,i);
}
gettp();
sol();
rep(i,1,n)cout<<ans[i]<<'\n';
return 0;
}
luogu2597-[ZJOI2012]灾难 && DAG支配树的更多相关文章
- CF757F-Team Rocket Rises Again【最短路,DAG支配树】
正题 题目链接:https://www.luogu.com.cn/problem/CF757F 题目大意 \(n\)个点\(m\)条边的一张无向图,求删除\(s\)以外的一个点改变\(s\)到最多点的 ...
- 2019 Multi-University Training Contest 3 B 支配树
题目传送门 题意:给出衣服有向无环图(DAG),,定义出度为0的点为中心城市,每次询问给出两个点,求破坏任意一个城市,使得这两个点至少有一个点无法到达中心城市,求方案数. 思路:首先建立反向图,将城市 ...
- [BZOJ2815][ZJOI2012]灾难(拓扑排序/支配树)
支配树目前只见到这一个应用,那就不独分一类,直接作为拓扑排序题好了. 每个点向所有食物连边,定义fa[x]为x的支配点,即离x最近的点,满足若fa[x]灭绝,则x也要灭绝. 这样,将fa[x]向x连边 ...
- BZOJ2815: [ZJOI2012]灾难
传送门 学LCA的时候根本没意识到LCA可以有这么多玩法. 这玩意据说是个高级数据结构(支配树)的弱化版,蒟蒻没学过呀.所以出题人提出一个概念叫灾难树. 我理解的灾难树的意思实际上是属于DAG的一个子 ...
- P2597 [ZJOI2012]灾难——拓扑,倍增,LCA
最近想学支配树,但是基础还是要打好了的: P2597 [ZJOI2012]灾难 这道题是根据食物链链接出一个有向图的关系,求一个物种的灭绝会连带几种物种的灭绝: 求得就是一个点能支配几个点: 如果一个 ...
- cf757F Team Rocket Rises Again (dijkstra+支配树)
我也想要皮卡丘 跑一遍dijkstra,可以建出一个最短路DAG(从S到任意点的路径都是最短路),然后可以在上面建支配树 并不会支配树,只能简单口胡一下在DAG上的做法 建出来的支配树中,某点的祖先集 ...
- 2018.06.27 NOIP模拟 节目(支配树+可持久化线段树)
题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 学校一年一度的学生艺术节开始啦!在这次的艺术节上总共有 N 个节目,并且总共也有 N 个舞台供大家表演.其中第 i 个节目的 ...
- 【BZOJ2815】[ZJOI2012]灾难 拓扑排序+LCA
[BZOJ2815][ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从 ...
- [洛谷P2597] [ZJOI2012]灾难
洛谷题目链接:[ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,如果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从而引 ...
随机推荐
- import提升导致Fundebug报错:“请配置apikey”
摘要: 解释一下"请配置apikey"报错的原因. 部分Fundebug用户使用import来导入js文件时,出现了"请配置apikey"的报错,这是由于imp ...
- Adaptive Placeholders
https://wisdmlabs.com/blog/create-adaptive-placeholders-using-css/ https://circleci.com/blog/adaptiv ...
- 免费开源ERP-成功案例分析(2)
Odoo用户案例 Odoo用户概要 关于Odoo全球的用户,我们来看一些数据: Odoo目前全球有300万使用者 Odoo系统上每天新创建的数据库超过1000个 Odoo和Word.Excel.Pow ...
- Dynamics 365-Full Text Index on Stopwords
之前写了一篇关于Online Relevance Search的博文,然后又看到罗勇大神关于Full Text Index的博文:Dynamics CRM中一个查找字段引发的[血案],于是准备写点关于 ...
- 关于Windows系统不会变慢的设想
记录软件安装的过程,比如创建了哪些服务,哪些计划任务以及启动项等等. 然后软件安装完成后把关于软件的进程,服务,计划任务等都删掉. 然后手动创建一个脚本,用脚本代替软件的启动.比如,如果要启动sqls ...
- CPP笔记_函数返回局部变量
本篇笔记记录的是关于返回函数中的局部值. 我们知道,在函数中创建的局部变量会随着函数的调用过程的结束,也即其对应函数栈帧的清除,而结束其生命周期.那么,如果我们把这个局部变量返回,就有可能存在该变量对 ...
- Android为TV端助力 MediaPlayer 错误代码(error code)总结 转载
public static final int MEDIA_ERROR_IO Added in API level 17 File or network related operation error ...
- Web项目发布后字体文件找不到
一.问题 ①ASP.NET项目,开发工具Visual Studio ②在IIS上发布之后,网页控制台报错,某某文件找不到,但是在服务器文件夹中看明明有那个文件 二.解决方法 ①>>打开II ...
- 用一条SQL语句显示所有可能的比赛组合
一个叫team的表,里面只有一个字段name,一共有4 条纪录,分别是a.b.c.d,对应四个球队,现在四个球队进行比赛,用一条SQL语句显示所有可能的比赛组合. select * from team ...
- CVE-2018-8120 分析
目录 CVE-2018-8120 分析 1.实验环境 1.1.操作系统 1.2.用到的分析工具 2.假如 2.1.我想提权 2.2. 有一个处于内核空间,极少被调用的函数 2.3.R3任意修改R0地址 ...