luogu2597-[ZJOI2012]灾难 && DAG支配树
Description
P2597 [ZJOI2012]灾难 - 洛谷 | 计算机科学教育新生态
Solution
根据题意建图, 新建一个 \(S\) 点, 连向每个没有入边的点.
定义每个点 \(P\) 的支配点为从 \(S\) 到 \(P\) 的任意路径必经的点. 那么题意便为对于每一个点, 求有多少个点以它作为支配点.
考虑建立一棵支配树, 其中除了 \(S\) 之外的点 \(P\) 的父亲 \(\text{fa} (P)\) 表示距离 \(P\) 最近的支配点. 显然 \(\text{fa} (\text{fa} (P))\) 也为 \(P\) 的支配点.
我们先对图拓扑排序.
考虑所有能直接到达点 \(V\) 的点 \(U\), 即存在边 \((U,V)\). 那么 \(\text{fa} (V)\) 显然为所有 \(U\) 在支配树上的 \(\text{lca}\). 之后在支配树上加入边 \((\text{fa} (V), V)\) 即可. 对于 \(\text{lca}\), 可以通过倍增 \(O(\log n)\) 维护.
之后通过在支配树上DP即可求得结果. 同时, 发现支配树和DAG上的拓扑序相同, 可以利用刚才求到的拓扑序直接DP.
时间复杂度 \(O((n+m) \log n)\).
注意必须建立 \(S\)点, 否则如果多个没有入边的点时会死.==
Code
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
const int nsz=65600,msz=1.5e6+50;
int n,ans[nsz];
struct te{int t,pr;}edge[msz];
int hd[nsz],pe=1,in[nsz];
void adde(int f,int t){
edge[++pe]=(te){t,hd[f]};
hd[f]=pe;
++in[t];
}
#define forg(p,i,v) for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t)
int que[nsz],qh=1,qt=0;
int tp[nsz],pt=0;
void gettp(){
// rep(i,1,n)if(in[i]==0)que[++qt]=i;
que[++qt]=n+1;
int u;
while(qh<=qt){
u=que[qh++],tp[++pt]=u;
forg(u,i,v){
--in[v];
if(in[v]==0)que[++qt]=v;
}
}
}
int fa[nsz][20],fa0[nsz],dep[nsz]{-1};
void addfa(int p,int f){
dep[p]=dep[f]+1;
fa[p][0]=f;
rep(i,1,18)fa[p][i]=fa[fa[p][i-1]][i-1];
}
int lca(int a,int b){
if(dep[a]<dep[b])swap(a,b);
repdo(i,18,0){
if(dep[fa[a][i]]<dep[b])continue;
a=fa[a][i];
}
if(a==b)return a;
repdo(i,18,0){
if(fa[a][i]==fa[b][i])continue;
a=fa[a][i],b=fa[b][i];
}
return fa[a][0];
}
void sol(){
rep(i,1,n+1){
int p=tp[i];
if(fa0[p])addfa(p,fa0[p]);
forg(p,j,v){
if(fa0[v]==0)fa0[v]=p;
else fa0[v]=lca(fa0[v],p);
}
}
repdo(i,n+1,2){
int p=tp[i];
ans[fa[p][0]]+=ans[p]+1;
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
int a;
rep(i,1,n){
while(cin>>a,a){
adde(a,i);
}
if(in[i]==0)adde(n+1,i);
}
gettp();
sol();
rep(i,1,n)cout<<ans[i]<<'\n';
return 0;
}
luogu2597-[ZJOI2012]灾难 && DAG支配树的更多相关文章
- CF757F-Team Rocket Rises Again【最短路,DAG支配树】
正题 题目链接:https://www.luogu.com.cn/problem/CF757F 题目大意 \(n\)个点\(m\)条边的一张无向图,求删除\(s\)以外的一个点改变\(s\)到最多点的 ...
- 2019 Multi-University Training Contest 3 B 支配树
题目传送门 题意:给出衣服有向无环图(DAG),,定义出度为0的点为中心城市,每次询问给出两个点,求破坏任意一个城市,使得这两个点至少有一个点无法到达中心城市,求方案数. 思路:首先建立反向图,将城市 ...
- [BZOJ2815][ZJOI2012]灾难(拓扑排序/支配树)
支配树目前只见到这一个应用,那就不独分一类,直接作为拓扑排序题好了. 每个点向所有食物连边,定义fa[x]为x的支配点,即离x最近的点,满足若fa[x]灭绝,则x也要灭绝. 这样,将fa[x]向x连边 ...
- BZOJ2815: [ZJOI2012]灾难
传送门 学LCA的时候根本没意识到LCA可以有这么多玩法. 这玩意据说是个高级数据结构(支配树)的弱化版,蒟蒻没学过呀.所以出题人提出一个概念叫灾难树. 我理解的灾难树的意思实际上是属于DAG的一个子 ...
- P2597 [ZJOI2012]灾难——拓扑,倍增,LCA
最近想学支配树,但是基础还是要打好了的: P2597 [ZJOI2012]灾难 这道题是根据食物链链接出一个有向图的关系,求一个物种的灭绝会连带几种物种的灭绝: 求得就是一个点能支配几个点: 如果一个 ...
- cf757F Team Rocket Rises Again (dijkstra+支配树)
我也想要皮卡丘 跑一遍dijkstra,可以建出一个最短路DAG(从S到任意点的路径都是最短路),然后可以在上面建支配树 并不会支配树,只能简单口胡一下在DAG上的做法 建出来的支配树中,某点的祖先集 ...
- 2018.06.27 NOIP模拟 节目(支配树+可持久化线段树)
题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 学校一年一度的学生艺术节开始啦!在这次的艺术节上总共有 N 个节目,并且总共也有 N 个舞台供大家表演.其中第 i 个节目的 ...
- 【BZOJ2815】[ZJOI2012]灾难 拓扑排序+LCA
[BZOJ2815][ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从 ...
- [洛谷P2597] [ZJOI2012]灾难
洛谷题目链接:[ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,如果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从而引 ...
随机推荐
- keras & tensorflow 列出可用GPU 和 切换CPU & GPU
列出可用GPU from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) from ...
- Android为TV端助力 完全解析模拟遥控器按键
public class VirturlKeyPadCtr { private static Instrumentation mInstrumentation; public static void ...
- Mybatis从认识到了解
目录 MyBatis的介绍 介绍: 为什么选择MyBatis: 与Hibernate的对比: MyBatis的优点: 入门示例 Mybatis核心组件 四大核心组件 SqlSessionFactory ...
- C++17剖析:string在Modern C++中的实现
概述 GCC 8.2提供了两个版本的std::string:一个是基于Copy On Write的,另一个直接字符串拷贝的.前者针对C++11以前的,那时候没有移动构造,一切以效率为先,需要使用COW ...
- linux Page cache和buffer cache正解
Page cache和buffer cache一直以来是两个比较容易混淆的概念,在网上也有很多人在争辩和猜想这两个cache到底有什么区别,讨论到最后也一直没有一个统一和正确的结论,在我工作的这一段时 ...
- 数据流中的第k大元素的golang实现
设计一个找到数据流中第K大元素的类(class).注意是排序后的第K大元素,不是第K个不同的元素. 你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中 ...
- python打印电脑串口的信息
# -*- coding:utf-8 -*- from serial.tools.list_ports import comports port_list = list(comports()) if ...
- insert into select的实际用法
INSERT INTO SELECT语句 语句形式为:Insert into Table2(field1,field2,...) select value1,value2,... from Table ...
- 【Linux基础】mount报错:mount.nfs: Remote I/O error
问题描述:mount 报错:mount.nfs: Remote I/O error 挂载时需要指明版本,由于NFS服务器有多个版本,V2.V3.V4.而且各版本同时运行,因此挂载时需要说明版本号. 由 ...
- Django【跨域】
jsonp 方式一:指定返回方法 # 后端 def view(request): callback = request.GET.get('callback') return HttpResponse( ...