Description

P2597 [ZJOI2012]灾难 - 洛谷 | 计算机科学教育新生态

Solution

根据题意建图, 新建一个 \(S\) 点, 连向每个没有入边的点.

定义每个点 \(P\) 的支配点为从 \(S\) 到 \(P\) 的任意路径必经的点. 那么题意便为对于每一个点, 求有多少个点以它作为支配点.

考虑建立一棵支配树, 其中除了 \(S\) 之外的点 \(P\) 的父亲 \(\text{fa} (P)\) 表示距离 \(P\) 最近的支配点. 显然 \(\text{fa} (\text{fa} (P))\) 也为 \(P\) 的支配点.

我们先对图拓扑排序.

考虑所有能直接到达点 \(V\) 的点 \(U\), 即存在边 \((U,V)\). 那么 \(\text{fa} (V)\) 显然为所有 \(U\) 在支配树上的 \(\text{lca}\). 之后在支配树上加入边 \((\text{fa} (V), V)\) 即可. 对于 \(\text{lca}\), 可以通过倍增 \(O(\log n)\) 维护.

之后通过在支配树上DP即可求得结果. 同时, 发现支配树和DAG上的拓扑序相同, 可以利用刚才求到的拓扑序直接DP.

时间复杂度 \(O((n+m) \log n)\).

注意必须建立 \(S\)点, 否则如果多个没有入边的点时会死.==

Code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll; //---------------------------------------
const int nsz=65600,msz=1.5e6+50;
int n,ans[nsz];
struct te{int t,pr;}edge[msz];
int hd[nsz],pe=1,in[nsz];
void adde(int f,int t){
edge[++pe]=(te){t,hd[f]};
hd[f]=pe;
++in[t];
}
#define forg(p,i,v) for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t) int que[nsz],qh=1,qt=0;
int tp[nsz],pt=0;
void gettp(){
// rep(i,1,n)if(in[i]==0)que[++qt]=i;
que[++qt]=n+1;
int u;
while(qh<=qt){
u=que[qh++],tp[++pt]=u;
forg(u,i,v){
--in[v];
if(in[v]==0)que[++qt]=v;
}
}
} int fa[nsz][20],fa0[nsz],dep[nsz]{-1}; void addfa(int p,int f){
dep[p]=dep[f]+1;
fa[p][0]=f;
rep(i,1,18)fa[p][i]=fa[fa[p][i-1]][i-1];
}
int lca(int a,int b){
if(dep[a]<dep[b])swap(a,b);
repdo(i,18,0){
if(dep[fa[a][i]]<dep[b])continue;
a=fa[a][i];
}
if(a==b)return a;
repdo(i,18,0){
if(fa[a][i]==fa[b][i])continue;
a=fa[a][i],b=fa[b][i];
}
return fa[a][0];
} void sol(){
rep(i,1,n+1){
int p=tp[i];
if(fa0[p])addfa(p,fa0[p]);
forg(p,j,v){
if(fa0[v]==0)fa0[v]=p;
else fa0[v]=lca(fa0[v],p);
}
}
repdo(i,n+1,2){
int p=tp[i];
ans[fa[p][0]]+=ans[p]+1;
}
} int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
int a;
rep(i,1,n){
while(cin>>a,a){
adde(a,i);
}
if(in[i]==0)adde(n+1,i);
}
gettp();
sol();
rep(i,1,n)cout<<ans[i]<<'\n';
return 0;
}

luogu2597-[ZJOI2012]灾难 && DAG支配树的更多相关文章

  1. CF757F-Team Rocket Rises Again【最短路,DAG支配树】

    正题 题目链接:https://www.luogu.com.cn/problem/CF757F 题目大意 \(n\)个点\(m\)条边的一张无向图,求删除\(s\)以外的一个点改变\(s\)到最多点的 ...

  2. 2019 Multi-University Training Contest 3 B 支配树

    题目传送门 题意:给出衣服有向无环图(DAG),,定义出度为0的点为中心城市,每次询问给出两个点,求破坏任意一个城市,使得这两个点至少有一个点无法到达中心城市,求方案数. 思路:首先建立反向图,将城市 ...

  3. [BZOJ2815][ZJOI2012]灾难(拓扑排序/支配树)

    支配树目前只见到这一个应用,那就不独分一类,直接作为拓扑排序题好了. 每个点向所有食物连边,定义fa[x]为x的支配点,即离x最近的点,满足若fa[x]灭绝,则x也要灭绝. 这样,将fa[x]向x连边 ...

  4. BZOJ2815: [ZJOI2012]灾难

    传送门 学LCA的时候根本没意识到LCA可以有这么多玩法. 这玩意据说是个高级数据结构(支配树)的弱化版,蒟蒻没学过呀.所以出题人提出一个概念叫灾难树. 我理解的灾难树的意思实际上是属于DAG的一个子 ...

  5. P2597 [ZJOI2012]灾难——拓扑,倍增,LCA

    最近想学支配树,但是基础还是要打好了的: P2597 [ZJOI2012]灾难 这道题是根据食物链链接出一个有向图的关系,求一个物种的灭绝会连带几种物种的灭绝: 求得就是一个点能支配几个点: 如果一个 ...

  6. cf757F Team Rocket Rises Again (dijkstra+支配树)

    我也想要皮卡丘 跑一遍dijkstra,可以建出一个最短路DAG(从S到任意点的路径都是最短路),然后可以在上面建支配树 并不会支配树,只能简单口胡一下在DAG上的做法 建出来的支配树中,某点的祖先集 ...

  7. 2018.06.27 NOIP模拟 节目(支配树+可持久化线段树)

    题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 学校一年一度的学生艺术节开始啦!在这次的艺术节上总共有 N 个节目,并且总共也有 N 个舞台供大家表演.其中第 i 个节目的 ...

  8. 【BZOJ2815】[ZJOI2012]灾难 拓扑排序+LCA

    [BZOJ2815][ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从 ...

  9. [洛谷P2597] [ZJOI2012]灾难

    洛谷题目链接:[ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,如果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从而引 ...

随机推荐

  1. JavaScript 为什么要有 Symbol 类型?

    Symbols 是 ES6 引入了一个新的数据类型 ,它为 JS 带来了一些好处,尤其是对象属性时. 但是,它们能为我们做些字符串不能做的事情呢? 在深入探讨 Symbol 之前,让我们先看看一些 J ...

  2. Android远程桌面助手之系统兼容篇

    Android远程桌面助手理论上兼容Android4.4至Android8.1之间所有的原生安卓系统,其他第三方ROM,如MIUI.Flyme.EMUI和Smartisan OS等也都陆续测试过,目前 ...

  3. 使用GRPC远程服务调用

    远程过程调用(英语:Remote Procedure Call,缩写为 RPC)是一个计算机通信协议.该协议允许运行于一台计算机的程序调用另一台计算机的子程序,而程序员无需额外地为这个交互作用编程.如 ...

  4. MySQL慢查询日志释疑总结

      之前写了一篇"MySQL慢查询日志总结",总结了一些MySQL慢查询日志常用的相关知识,这里总结一下在工作当中遇到关于MySQL慢查询日志的相关细节问题,有些是释疑或自己有疑惑 ...

  5. python实例七

    https://www.cnblogs.com/evablogs/p/6791548.html 题目:将一个列表的数据复制到另一个列表中. 程序分析:打算利用for循环和append函数来复制到另一个 ...

  6. Chrome浏览器清除缓存

    1.功能列表点击历史记录 可以是按时间清除 自动清除: 使用谷歌的无痕模式可以自动清除缓存

  7. elasticsearch系列一:elasticsearch(ES简介、安装&配置、集成Ikanalyzer)

    一.ES简介 1. ES是什么? Elasticsearch 是一个开源的搜索引擎,建立在全文搜索引擎库 Apache Lucene 基础之上 用 Java 编写的,它的内部使用 Lucene 做索引 ...

  8. 简单理解Java的反射

    反射(reflect): JAVA反射机制是在运行状态中,对于任意一个实体类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意方法和属性:这种动态获取信息以及动态调用对象方法的功 ...

  9. Scheme来实现八皇后问题(1)

    版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/9768105.html 作者:窗户 Q ...

  10. Django--session(登录用)

    一.session的原理图 二.Django中session对象的设置/读取/删除及其他方法 三. Django--配置 settings.py中与session有关的参数 一.session的原理图 ...