[COGS2639]偏序++

题目大意:

\(n(n\le40000)\)个\(k(k\le7)\)元组,求\(k\)维偏序。

思路:

分块后用bitset维护。

时间复杂度\(\mathcal O(kn\sqrt n)\)。

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<bitset>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int K=7,N=40000,B=200;
std::bitset<N> set[7][B],tmp;
int n,k,bel[N],end[B],block,a[K][N],pos[K][N];
int main() {
freopen("partial_order_plus.in","r",stdin);
freopen("partial_order_plus.out","w",stdout);
n=getint(),k=getint();
block=sqrt(n);
for(register int i=0;i<n;i++) {
end[bel[i]=i/block]=i;
}
for(register int i=0;i<n;i++) a[0][i]=i;
for(register int i=1;i<=k;i++) {
for(register int j=0;j<n;j++) {
a[i][j]=getint()-1;
pos[i][a[i][j]]=j;
}
}
for(register int i=0;i<=k;i++) {
for(register int j=0;j<n;j++) {
set[i][bel[a[i][j]]][j]=true;
}
for(register int j=1;j<=(n-1)/block;j++) {
set[i][j]|=set[i][j-1];
}
}
int64 ans=0;
for(register int i=0;i<n;i++) {
tmp=set[0][bel[i]];
for(register int j=i;j<=end[bel[i]];j++) {
tmp[j]=false;
}
for(register int j=1;j<=k;j++) {
tmp&=set[j][bel[a[j][i]]];
for(register int k=a[j][i];k<=end[bel[a[j][i]]];k++) {
tmp[pos[j][k]]=false;
}
}
ans+=tmp.count();
}
printf("%lld\n",ans);
return 0;
}

[COGS2639]偏序++的更多相关文章

  1. 几道很Interesting的偏序问题

    若干道偏序问题(STL,分块) 找了4道题目 BZOJ陌上花开(权限题,提供洛谷链接) Cogs2479偏序 Cogs2580偏序II Cogs2639偏序++ 作为一个正常人,肯定先看三维偏序 做法 ...

  2. [COGS2479 && COGS2639]高维偏序(CDQ分治,bitset)

    COGS2479:四维偏序. CDQ套CDQ CDQ:对a分治,对b排序,再对a打标记,然后执行CDQ2 CDQ2:对b分治,对c归并排序,对d树状数组. #include<cstdio> ...

  3. 【教程】CDQ套CDQ——四维偏序问题

    前言 上一篇文章已经介绍了简单的CDQ分治,包括经典的二维偏序和三维偏序问题,还有带修改和查询的二维/三维偏序问题.本文讲介绍多重CDQ分治的嵌套,即多维偏序问题. 四维偏序问题       给定N( ...

  4. c++模板函数实例化的偏序机制

    一:废话 今天在stackoverflow上看到一个关于c++模板specialization的问题: http://stackoverflow.com/questions/18283851/temp ...

  5. COGS 2479 偏序 题解

    [题意] 给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数. 对于30%的 ...

  6. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  7. 2015北京网络赛 J Clarke and puzzle 求五维偏序 分块+bitset

    Clarke and puzzle Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/contest/acmicpc20 ...

  8. COGS 2479. [HZOI 2016]偏序 [CDQ分治套CDQ分治 四维偏序]

    传送门 给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数. 对于100%的 ...

  9. BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...

随机推荐

  1. 20165227 实验三《敏捷开发与XP实践》实验报告

    2017-2018-4 20165227 实验三<敏捷开发与XP实践>实验报告 实验内容 1.XP基础 2.XP核心实践 3.相关工具 实验要求 1.没有Linux基础的同学建议先学习&l ...

  2. 【Nginx】 Nginx实现端口转发

    什么是端口转发 当我们在服务器上搭建一个图书以及一个电影的应用,其中图书应用启动了 8001 端口,电影应用启动了 8002 端口.此时如果我们可以通过 localhost:8001 //图书 loc ...

  3. Redis—数据结构之sds

    Redis是一个Key Value数据库.Redis有5种数据类型:字符串.列表.哈希.集合.有序集合.而字符串的底层实现方法之一就是使用sds.以下描述中请读者注意区分sds是指简单动态字符串这一数 ...

  4. 80.YCrCb - YUV - RGB之间的介绍

    一,引言 YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL).YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视.与RGB视频信号传输相比,它最大的优点在于只需 ...

  5. QEMU漏洞挖掘

    转载:https://www.tuicool.com/articles/MzqYbia qemu是一个开源的模拟处理器硬件设备的全虚拟化仿真器和虚拟器. KVM(kernel virtual mach ...

  6. python并发爬虫利器tomorrow(一)

    tomorrow是我最近在用的一个爬虫利器,该模块属于第三方的一个模块,使用起来非常的方便,只需要用其中的threads方法作为装饰器去修饰一个普通的函数,既可以达到并发的效果,本篇将用实例来展示to ...

  7. C#基础学习之FileStream

    FileStream和File的区别  后者比前者给内存带来压力大. FileStream可以操作字节也就是可以保存任何类型的文件. 1.FileStream读文件操作 //OpenOrCreate: ...

  8. 涨姿势系列之——内核环境下花式获得CSRSS进程id

    这个是翻别人的代码时看到的,所以叫涨姿势系列.作者写了一个获取CSRSS进程PID的函数,结果我看了好久才看懂是这么一个作用.先放上代码 HANDLE GetCsrPid() { HANDLE Pro ...

  9. InstallShield在MySQL和Oracle中执行SQL脚本的方法InstallShield在MySQL和Oracle中执行SQL脚本的方法

    简述 InstallShield已经内建了对MySQL和Oracle的支持.但是这个功能是通过ODBC实现的,它对SQL脚本的格式要求非常严格,因此已经通过官方客户端测试的脚本在IS中执行时往往就会报 ...

  10. Ansible之迭代、模板

    本节内容: 迭代 模板(JInjia2相关) Jinja2相关 一.迭代 当有需要重复性执行的任务时,可以使用迭代机制.其使用格式为将需要迭代的内容定义为item变量引用,并通过with_items语 ...