这题是显然的数位$dp$,然而我居然写了一个下午!!!

我们不难想到差分,令$solve(x,y)$表示从第一个数字在区间$[0,x]$,第二个数字在区间$[0,y]$的答案。

不难发现题目中给了你一对$A$,$B$,答案显然为$solve(B,B)-2solve(A-1,B)+solve(A-1,A-1)$。

考虑如何求解$solve(x,y)$函数,令$n=max(len(x),len(y))$,其中$len(p)$表示数字$p$在十进制下的长度(以下的位均代表十进制位)。

令$f[i]$表示数字$x$在模意义下前$i$位的值,令$F[i]$表示数字$x$在模意义下后$n-i+1$位的值。

同理,我们处理出$g[i]$和$G[i]$。

令$mi[i]$表示模意义下$10^i$的值,$Mi[i]$表示模意义下$10^(n-i+1)$的值。

令$ans[i][j][k]$表示第一个数字的第$i$位为$j$,第二个数字的第$i$位为$k$时的答案。

设第一个数字第$i$位为$j$的数字个数为$mul1$,第二个数字第$i$位为$k$的个数为$mul2$。

下面考虑如何求$mul1$,设$x[i]$为数字$x$的第i位,$num[i]$为数字$x$前$i$位构成的数,$Num[i]$为数字$x$后$i$位构成的数。

当$x[i]<j$时,$mul1=(f[i-1]+1)\times Mi[i+1]$,这里可以理解为前$i$位填一个数不大于$num[i-1]$的数,或者全填$0$,后$n-i$个数随便填的方案数。

当$x[i]==j$时,$mul1=f[i-1]\times Mi[i+1]+F[i+1]+1$ ,这里可以理解为前$i$位填一个小于$num[i-1]$的数,后$n-i$个数随便填的方案数,加上前$i$个数和$x$的前i个数相同,后n-i个数填写不大于F[i+1]的方案数。

当x[i]>j时,$mul1=f[i-1]\times Mi[i+1]$,这里可以理解为前$i$位填一个小于$num[i-1]$的数,后$n-i$位随便填的方案数。

求$mul2$同理

那么显然,$ans[i][j][k]=mul1\times mul2$。$solve(x,y)=\sum_{i=1}^{n}\sum_{j=0}^{9}\sum_{k=0}^{9}ans[i][j][k]$。

最终的答案为$solve(B,B)-2solve(A-1,B)+solve(A-1,A-1)$。考虑到$A$跟$B$的位数可能很大,这个减法需要用高精度。

完结撒花,注意细节。

 #include<bits/stdc++.h>
#define MOD 1000000007
#define M 100005
#define LL long long
using namespace std;
char c[M]={};
struct bign{
LL a[M+],len; bign(){memset(a,,sizeof(a));}
void rd(){
scanf("%s",c); len=strlen(c);
for(LL i=;i<len;i++) a[M-i]=c[len-i-]-'';
}
void jian(){
for(LL i=M,g=;i&&g;i--){
LL s=a[i]-g;
if(s>=) a[i]=s,g=;
else a[i]=s+,g=;
}
for(LL i=;i<=M;i++)
if(a[i]!=){
len=M-i+;
return;
}
}
}A,B,L,R;
LL f[M]={},g[M]={},F[M]={},G[M]={},mi[M]={},Mi[M]={},a[M]={},b[M]={},n; LL solve(){
n=max(A.len,B.len); LL res=;
mi[]=; for(LL i=;i<=n;i++) mi[i]=mi[i-]*%MOD;
F[n+]=G[n+]=;
for(LL i=;i<=n;i++) a[i]=A.a[M-n+i],b[i]=B.a[M-n+i];
for(LL i=;i<=n;i++) f[i]=(f[i-]*+a[i])%MOD,g[i]=(g[i-]*+b[i])%MOD;
for(LL i=n;i;i--) F[i]=(F[i+]+a[i]*mi[n-i])%MOD,G[i]=(G[i+]+b[i]*mi[n-i])%MOD;
Mi[n+]=; for(LL i=n;i;i--) Mi[i]=Mi[i+]*%MOD; for(LL i=;i<=n;i++){
for(LL num1=;num1<;num1++)
for(LL num2=;num2<;num2++){
LL cha=abs(num1-num2),mul1=,mul2=;
if(num1<a[i]) mul1=(f[i-]+)*mi[n-i]%MOD;
if(num1==a[i]) mul1=(f[i-]*Mi[i+]%MOD+F[i+]+)%MOD;
if(num1>a[i]) mul1=f[i-]*Mi[i+]%MOD; if(num2<b[i]) mul2=(g[i-]+)*mi[n-i]%MOD;
if(num2==b[i]) mul2=(g[i-]*Mi[i+]%MOD+G[i+]+)%MOD;
if(num2>b[i]) mul2=g[i-]*Mi[i+]%MOD; res=(res+mul1*mul2%MOD*cha)%MOD;
}
}
return res;
} int main(){
L.rd(); R.rd();
LL ans=;
A=R; B=R;
ans=solve();
A=L; A.jian();
ans=(ans-*solve()+*MOD)%MOD;
B=L; B.jian();
ans=(ans+solve())%MOD;
cout<<ans<<endl;
}

【xsy1611】 数位dp 数位dp的更多相关文章

  1. [DP]数位DP总结

     数位DP总结 By Wine93 2013.7 1.学习链接 [数位DP] Step by Step   http://blog.csdn.net/dslovemz/article/details/ ...

  2. CodeForces 54C-First Digit Law(数位,概率dp)

    题意: 给你n个区间,在每个区间里各取一个数(随机取),求这n个数中超过K%的数是首位为1数的概率 分析: dp[i][j]取前i个数,有j个是首位为1的数的概率 易知,dp[i][j]=dp[i-1 ...

  3. 数位dp模板 [dp][数位dp]

    现在才想到要学数位dp,我是不是很弱 答案是肯定的 以一道自己瞎掰的题为模板 //题: //输入数字n //从0枚举到n,计算这n+1个数中含有两位数a的数的个数 //如12930含有两位数93 #i ...

  4. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

  5. Codeforces 946 课程表背包DP 数位DFS构造

    A B 给你A,B 两个数      1.a=0 OR b=0 break      2.a>=2b a=a-2b        3.b>=2a b=b-2a 如果只是单纯模拟肯定会超时 ...

  6. DP套DP HDOJ 4899 Hero meet devil(国王的子民的DNA)

    题目链接 题意: 给n长度的S串,对于0<=i<=|S|,有多少个长度为m的T串,使得LCS(S,T) = i. 思路: 理解的不是很透彻,先占个坑. #include <bits/ ...

  7. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  8. 377. Combination Sum IV——DP本质:针对结果的迭代,dp[ans] <= dp[ans-i] & dp[i] 找三者关系 思考问题的维度+1,除了数据集迭代还有考虑结果

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  9. HDU4960Another OCD Patient(间隙dp,后座DP)

    Another OCD Patient Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot ...

  10. [CF697D]Puzzles 树形dp/期望dp

    Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...

随机推荐

  1. Devexpress VCL Build v2014 vol 14.1.4 发布

    虽然这次没加什么新东西,但是及时更新支持xe7,还算可以. What's New in 14.1.4 (VCL Product Line)   New Major Features in 14.1 W ...

  2. ABP框架系列之二十三:(EF-MySql-Integration-EF-MySql-集成)

    Introduction While our default templates designed to work with SQL Server, you can easily modify the ...

  3. idea使用svn提交时出现错误Warning not all local changes may be shown due to an error

    参考于https://www.cnblogs.com/zhujiabin/p/6708012.html 解决方案: 1.File > Settings > Version Control ...

  4. UVa 11280 Flying to Fredericton (DP + Dijkstra)

    题意:给出n(2<=n<=100)个城市之间的m(0<=m<=1000)条航线以及对应的机票价格,要求回答一些询问,每个询问是给出最大停留次数S,求从其实城市Calgary到终 ...

  5. VHDL的库

    STD_LOGIC_ARITH 扩展了UNSIGNED.SIGNED.SMALL_INT(短整型)三个数据类型,并定义了相关的算术运算和转换函数. --======================== ...

  6. VUE(现代库) VS jquery(传统库)

      众所周知最近几年前端发展非常的迅猛,除各种框架如:backbone.angular.reactjs外,还有模块化开发思想的实现库:sea.js .require.js .webpack以及 前端上 ...

  7. POJ2456 Aggressive cows 2017-05-11 17:54 38人阅读 评论(0) 收藏

    Aggressive cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13993   Accepted: 6775 ...

  8. 通过hbase实现日志的转存(MR AnalyserLogDataRunner和AnalyserLogDataMapper)

    操作代码(提前启动集群(start-all.sh).zookeeper(zkServer.sh start).启动历史任务服务器(mr-jobhistory-daemon.sh start histo ...

  9. Linux下的ICMP反弹后门:PRISM

    搜索的时候无意中看见的这款基于ping的ICMP后门.于是到作者的github上看看,居然是阴文的,为了过级,只能强忍着看了,学生狗伤不起.还好比较简单易懂,正如简介说的一样:“PRISM is an ...

  10. nodejs async

    官网:https://github.com/caolan/async 流程控制:简化十种常见流程的处理集合处理:如何使用异步操作处理集合中的数据工具类:几个常用的工具类 流程控制 详细说明:http: ...