CheeseZH: Stanford University: Machine Learning Ex1:Linear Regression
(1) How to comput the Cost function in Univirate/Multivariate Linear Regression;
(2) How to comput the Batch Gradient Descent function in Univirate/Multivariate Linear Regression;
(3) How to scale features by mean value and standard deviation;
(4) How to calculate Theta by normal equaltion;
Data1
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
1. ex1.m
%% Machine Learning Online Class - Exercise 1: Linear Regression % Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% warmUpExercise.m
% plotData.m
% gradientDescent.m
% computeCost.m
% gradientDescentMulti.m
% computeCostMulti.m
% featureNormalize.m
% normalEqn.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
% x refers to the population size in 10,000s
% y refers to the profit in $10,000s
% %% Initialization
clear ; close all; clc %% ==================== Part 1: Basic Function ====================
% Complete warmUpExercise.m
fprintf('Running warmUpExercise ... \n');
fprintf('5x5 Identity Matrix: \n');
warmUpExercise() fprintf('Program paused. Press enter to continue.\n');
pause; %% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause; %% =================== Part 3: Gradient descent ===================
fprintf('Running Gradient Descent ...\n') X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters % Some gradient descent settings
iterations = 1500;
alpha = 0.01; % compute and display initial cost
computeCost(X, y, theta) % run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations); % print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(1), theta(2)); % Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure % Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*10000);
predict2 = [1, 7] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*10000); fprintf('Program paused. Press enter to continue.\n');
pause; %% ============= Part 4: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...\n') % Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100); % initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
2.warmUpExercise.m
function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix A = [];
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix
% In octave, we return values by defining which variables
% represent the return values (at the top of the file)
% and then set them accordingly.
A = eye(5); % =========================================== end
3. computCost.m
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
hypothesis = X*theta;
J = 1/(2*m)*(sum((hypothesis-y).^2)); % ========================================================================= end
4.gradientDescent.m
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
hypothesis = X*theta;
delta = X'*(hypothesis-y);
theta = theta - alpha/m*delta; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end
Data2
2104,3,399900
1600,3,329900
2400,3,369000
1416,2,232000
3000,4,539900
1985,4,299900
1534,3,314900
1427,3,198999
1380,3,212000
1494,3,242500
1940,4,239999
2000,3,347000
1890,3,329999
4478,5,699900
1268,3,259900
2300,4,449900
1320,2,299900
1236,3,199900
2609,4,499998
3031,4,599000
1767,3,252900
1888,2,255000
1604,3,242900
1962,4,259900
3890,3,573900
1100,3,249900
1458,3,464500
2526,3,469000
2200,3,475000
2637,3,299900
1839,2,349900
1000,1,169900
2040,4,314900
3137,3,579900
1811,4,285900
1437,3,249900
1239,3,229900
2132,4,345000
4215,4,549000
2162,4,287000
1664,2,368500
2238,3,329900
2567,4,314000
1200,3,299000
852,2,179900
1852,4,299900
1203,3,239500
0.ex1_multi.m
%% Machine Learning Online Class
% Exercise 1: Linear regression with multiple variables
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear regression exercise.
%
% You will need to complete the following functions in this
% exericse:
%
% warmUpExercise.m
% plotData.m
% gradientDescent.m
% computeCost.m
% gradientDescentMulti.m
% computeCostMulti.m
% featureNormalize.m
% normalEqn.m
%
% For this part of the exercise, you will need to change some
% parts of the code below for various experiments (e.g., changing
% learning rates).
% %% Initialization %% ================ Part 1: Feature Normalization ================ %% Clear and Close Figures
clear ; close all; clc fprintf('Loading data ...\n'); %% Load Data
data = load('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y); % Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]'); fprintf('Program paused. Press enter to continue.\n');
pause; % Scale features and set them to zero mean
fprintf('Normalizing Features ...\n'); [X mu sigma] = featureNormalize(X); % Add intercept term to X
X = [ones(m, 1) X]; %% ================ Part 2: Gradient Descent ================ % ====================== YOUR CODE HERE ======================
% Instructions: We have provided you with the following starter
% code that runs gradient descent with a particular
% learning rate (alpha).
%
% Your task is to first make sure that your functions -
% computeCost and gradientDescent already work with
% this starter code and support multiple variables.
%
% After that, try running gradient descent with
% different values of alpha and see which one gives
% you the best result.
%
% Finally, you should complete the code at the end
% to predict the price of a 1650 sq-ft, 3 br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
% graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
% fprintf('Running gradient descent ...\n'); % Choose some alpha value
alpha = 0.01;
num_iters = 400; % Init Theta and Run Gradient Descent
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters); % Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J'); % Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n'); % Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
% Recall that the first column of X is all-ones. Thus, it does
% not need to be normalized.
price = 0; % You should change this % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using gradient descent):\n $%f\n'], price); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part 3: Normal Equations ================ fprintf('Solving with normal equations...\n'); % ====================== YOUR CODE HERE ======================
% Instructions: The following code computes the closed form
% solution for linear regression using the normal
% equations. You should complete the code in
% normalEqn.m
%
% After doing so, you should complete this code
% to predict the price of a 1650 sq-ft, 3 br house.
% %% Load Data
data = csvread('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y); % Add intercept term to X
X = [ones(m, 1) X]; % Calculate the parameters from the normal equation
theta = normalEqn(X, y); % Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n'); % Estimate the price of a 1650 sq-ft, 3 br house
% ====================== YOUR CODE HERE ======================
price = 0; % You should change this % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using normal equations):\n $%f\n'], price);
1.featureNormalize.m
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms. % You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2)); % ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful.
%
mu = mean(X);
sigma = std(X);
X_norm = (X_norm.-mu)./sigma; % ============================================================ end
2.computCostMulti.m
function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
hypothesis = X*theta;
J = 1/(2*m)*(sum((hypothesis-y).^2)); % ========================================================================= end
3.gradientDescentMulti.m
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
hypothesis = X*theta;
delta = X'*(hypothesis-y);
theta = theta - alpha/m*delta; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta); end end
4.normalEqn.m
function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression
% NORMALEQN(X,y) computes the closed-form solution to linear
% regression using the normal equations. theta = zeros(size(X, 2), 1); % ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta.
% % ---------------------- Sample Solution ---------------------- theta = pinv(X'*X)*X'*y; % ------------------------------------------------------------- % ============================================================ end
CheeseZH: Stanford University: Machine Learning Ex1:Linear Regression的更多相关文章
- CheeseZH: Stanford University: Machine Learning Ex2:Logistic Regression
1. Sigmoid Function In Logisttic Regression, the hypothesis is defined as: where function g is the s ...
- CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...
- CheeseZH: Stanford University: Machine Learning Ex3: Multiclass Logistic Regression and Neural Network Prediction
Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regress ...
- CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...
- Machine Learning #Lab1# Linear Regression
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...
- 【Coursera - machine learning】 Linear regression with one variable-quiz
Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...
- machine learning (2)-linear regression with one variable
machine learning- linear regression with one variable(2) Linear regression with one variable = univa ...
- ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS
ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
随机推荐
- OpenGL 模型视图投影矩阵 仿射矩阵
矩阵基础知识 要对矩阵进行运算,必须先要了解矩阵的计算公式,这个知识的内容涉及到了线性代数. 我们知道在Cocos2dx中,有关于平移,旋转,缩放等等操作,都必须要进行矩阵的乘法. 只需要一张图就能理 ...
- BZOJ 1196: [HNOI2006]公路修建问题 Kruskal/二分
1196: [HNOI2006]公路修建问题 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- 利用Hog特征和SVM分类器进行行人检测
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测.而这两位也通过大量的测试发现,Ho ...
- Jmeter学习之— 参数化、关联、断言、数据库的操作
一. Jmeter参数化1. 文件参数化解释:创建测试数据,将数据写入TXT文件文件中,然后Jmeter从文件中读取数据.例如用户注册操作:1. 首先在Jmeter下创建一个线程组,如下图: 2. 然 ...
- Apache 如何反向代理tomcat并且实现Session保持
简介 LAMT=Linux+Apache+MySQL+Tomcat: Tomcat 服务器是一个免费的开放源代码的Web 应用服务器,属于轻量级应用服务器: 在中小型系统和并发访问用户不是很多的场合下 ...
- python编译模块为2禁制
编译模块为2禁制yum -y install python26-setuptoolseasy_install -U setuptools# cd /usr/lib64/python2.6# easy_ ...
- WordPress 客户端软件列表
Windows: BlogDesk BlogJet Blog Writer Chrysanth WebStory Deepest Sender (Firefox或SeaMonkey扩展,跨平台- De ...
- 如何在windows server 2008上配置NLB群集
参考:http://zlwdouhao.blog.51cto.com/731028/781828 前些天写了一篇关于NLB群集模式多播和单播的简单介绍.那么下面我们一起来探讨一下,如何在windows ...
- 如何使用 Core Plot 的 API 帮助文档
Core Plot 可是 iOS 下绝好的图表组件,虽说它的相关资料不甚丰富,特别是中文的,英文的还是有几篇不错的文章,不过 Core Plot 自身提供的 API 帮助文档,以及代码示例其实很有用的 ...
- Selenium2+python自动化60-异常后截图(screenshot)
前言 在执行用例过程中由于是无人值守的,用例运行报错的时候,我们希望能对当前屏幕截图,留下证据. 在写用例的时候,最后一步是断言,可以把截图的动作放在断言这里,那么如何在断言失败后截图呢? 一.截图方 ...