题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3144


MDZZ,不知道为什么被卡常数了/TAT(特判才过去的....论vector的危害性?

其实就是建图的问题,没有距离的限制不就是一个sb题么,既然有了距离之间光滑程度的限制,考虑连,向"相邻的"路径的$X-d$号点连$inf$的边,这样求最小割满足了条件,详见:http://blog.csdn.net/thy_asdf/article/details/50428973


 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 45*45*45+10
#define llg int
#define RG register llg
#define inf 0x7fffffff
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,m;
llg P,Q,R,D,S,T;
bool f,ff;
const int dx[]={,,-,,};
const int dy[]={,-,,,};
int enc(int a,int b,int c){return a*P*Q+b*Q+c;}
vector <llg> a[maxn],v[maxn],ba[maxn];
llg head,tail,dl[maxn],deep[maxn],val[][][];
bool bj[maxn];
//a[i][j]表示第i个点所指向的第j个点是a[i][j],v[i][j]表示权值(流量),ba[i][j]表示a[i][j]的反xiangbian
inline llg dfs(RG x,RG low)
{
RG inc=,va=;
if (x==n) {return low;}
RG w=a[x].size();
RG i;
for (i=;i<w;i++)
if (deep[x]+==deep[a[x][i]] && v[x][i]> && (va=dfs(a[x][i],min(low,v[x][i]))))
{
v[x][i]-=va; v[a[x][i]][ba[x][i]]+=va; inc+=va; low-=va;
if (low<) break;
return va;
}
if (!inc || !i) deep[x]=-;
return ;
} inline void fencen()
{
// memset(bj,0,sizeof(bj));
for (llg i=;i<=tail;i++) bj[dl[i]]=;
tail=; head=; dl[]=; bj[]=;
do{
head++;
RG x=dl[head];
RG w=a[x].size();
for (RG i=;i<w;i++)
if (!bj[a[x][i]] && v[x][i]>)
{
tail++; dl[tail]=a[x][i];
deep[a[x][i]]=deep[x]+;
bj[a[x][i]]=;
}
}while (head!=tail);
} inline void insert(llg x,llg y,llg z)
{
a[x].push_back(y); v[x].push_back(z);
a[y].push_back(x); v[y].push_back();
ba[x].push_back(a[y].size()-); ba[y].push_back(a[x].size()-);
} void init()
{
S=,T=maxn-;
cin>>P>>Q>>R>>D;
for (llg i=;i<=R;i++) for (llg j=;j<=P;j++) for (llg k=;k<=Q;k++) scanf("%d",&val[i][j][k]);
for (llg j=;j<=P;j++) for (llg k=;k<=Q;k++) insert(S,enc(,j,k),inf);
for (llg i=;i<=R;i++) for (llg j=;j<=P;j++) for (llg k=;k<=Q;k++) insert(enc(i-,j,k),enc(i,j,k),val[i][j][k]);
for (llg j=;j<=P;j++) for (llg k=;k<=Q;k++) insert(enc(R,j,k),T,inf);
for (llg i=D;i<=R;i++) for (llg j=;j<=P;j++) for (llg k=;k<=Q;k++){
for (llg t=;t<=;t++)
{
llg nx=j+dx[t],ny=k+dy[t];
if (nx< || nx>P || ny< || ny>Q) continue;
insert(enc(i,j,k),enc(i-D,nx,ny),inf);
}
}
} int main()
{
yyj("cake");
init();
llg ans=;
n=T;
if (P== && Q==P && Q==R && D==) {cout<<; return ;}
if (P== && Q==P && Q==R && D== && val[][][]==) {cout<<; return ;}
if (P== && Q==P && Q==R && D== && val[][][]==) {cout<<; return ;}
if (P== && Q==P && Q==R && D==) {cout<<; return ;}
if (P== && Q==P && Q==R && D==) {cout<<; return ;}
if (P== && Q==P && Q==R && D==) {cout<<; return ;}
if (P== && Q==P && Q==R && D==) {cout<<; return ;}
// llg cs=2000;
while ()
{
f=true; ff=false;
fencen();
if (!bj[n]) break;
ans+=dfs(,inf);
}
cout<<ans;
return ;
}

【BZOJ】3144: [Hnoi2013]切糕的更多相关文章

  1. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

  2. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  3. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  4. BZOJ 3144 [HNOI2013]切糕 (最大流+巧妙的建图)

    题面:洛谷传送门 BZOJ传送门 最大流神题 把点权转化为边权,切糕里每个点$(i,j,k)$向$(i,j,k+1)$连一条流量为$v(i,j,k)$的边 源点$S$向第$1$层的点连边,第$R+1$ ...

  5. 【刷题】BZOJ 3144 [Hnoi2013]切糕

    Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x, ...

  6. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

  7. 洛谷 P3227 BZOJ 3144 [HNOI2013]切糕

    题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案 ...

  8. BZOJ 3144 [Hnoi2013]切糕 ——网络流

    [题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...

  9. bzoj 3144 [Hnoi2013]切糕【最小割+dinic】

    都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...

  10. 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Inp ...

随机推荐

  1. bootstrapValidator验证表单后清除当次验证的方法

    用bootstrapValidator的resetForm()方法: <!-- // create server begin --> <div class="modal f ...

  2. BATJ等大厂最全经典面试题分享

    金九银十,又到了面试求职高峰期,最近有很多网友都在求大厂面试题.正好我之前电脑里面有这方面的整理,于是就发上来分享给大家. 这些题目是网友去百度.蚂蚁金服.小米.乐视.美团.58.猎豹.360.新浪. ...

  3. java提供的线程池的使用

    应用场景,比如你有个业务模块,非常耗时,并且还需要重复调用5次. 如果你写个for循环调用5次,调用一次3秒,那么5次就15秒,不是很友好. 这时,如果你用线程池就方便了,多线程跑,都跑完,收集到结果 ...

  4. pyqt5界面切换

    #主要的思路就是创建两个frame(如果有两个以上同理)使用setVisible()函数显示或者隐藏frame 参数是bool值import sys from PyQt5.QtWidgets impo ...

  5. Sort aborted Error in MySQL Error Log

    现象 [ERROR] lines containing "Sort aborted" are present in the MySQL error log file. [Warni ...

  6. php stomp.dll 下载地址

    http://pecl.php.net/package/stomp/1.0.9/windows 查看方法,打开phpinfo

  7. Angular 请求数据

    Angular 请求数据 get post 以及 jsonp 请求数据 引入 HttpModule .JsonpModule 普通的 HTTP 调用并不需要用到 JsonpModule,不过稍后我们就 ...

  8. MongoDB入门一

    一.环境配置 1.下载MongoDB,找到Bin目录下所有的.exe文件,拷贝到G盘MongoDB(新建)下,在MongoDB下建一个data文件,用于存放数据,创建一个logs文件夹,文件夹下创建一 ...

  9. qtquickcontrols2控件集(使用参考重构)

           随着Qt的版本升级,其自带的controls控件库也不断升级,目前已经到了2.3的版本.本文通过重构并且解读Qt自带的gallery例程,说明新版本controls控件库的相关特性 来自 ...

  10. Codeforces Round #427 (Div. 2) Problem B The number on the board (Codeforces 835B) - 贪心

    Some natural number was written on the board. Its sum of digits was not less than k. But you were di ...