题目链接

\(Description\)

一个\(N*M\)的有障碍的棋盘,先手放置棋子后,从后手开始轮流移动棋子,不能走重复的位置,不能移动的输。求在哪些位置放棋子是先手必胜的。

\(Solution\)

依旧先黑白染色,移动棋子对应一个匹配。

那么原图有两种情况:

一是存在完美匹配:那么无论先手选哪个点开始,假设是S集合某点,那么后手沿匹配边走,先手要么沿匹配边再走到S集合某点,要么没法走。即先手必败;

二是不存在完美匹配:

1.先手从最大匹配点开始,好像胜负情况都有,先不考虑;

2.先手从非最大匹配点开始,后手只能走到一个最大匹配点(若能走到非匹配点则又是一个匹配,与最大匹配矛盾),然后先手再走匹配边,发现后手只能走匹配边。

因为当前点如果存在非匹配边,则与起点那个非匹配点又形成了一条增广路,与最大匹配矛盾。

那这又成了情况一了,即后手必败。

即如果起点是非最大匹配点则必胜。起点只要在某种最大匹配下不是最大匹配点就满足。

再看情况二的1,如果起点可以不是最大匹配点,则先手必胜。否则先手必败,和情况二的2的结论一样。

现在问题是判断有哪些点不一定在最大匹配中。首先跑一遍最大匹配,未匹配的点肯定是。

然后这些未匹配点\(x\)可以替换掉邻接点\(v\)的一条匹配边,即\(match[v]\)也可以不在最大匹配中(原先的匹配边\(v\rightarrow match[v]\)替换为\(v\rightarrow x\))。

对未匹配点DFS一遍就可以了。

复杂度在于匹配,\(O(n^2)\)?

刚想起来最大匹配要拆点。。或者黑白染色?也不用拆点或者染色,每个点向四周都连边即可。

不拆点要注意match[]/lk[]这个数组对两边的集合都要给它赋值,匹配(bool OK())的时候保证它之前没有匹配。。

做题前已经忘了最大匹配长什么样了...

//1680kb	256ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 350000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define ID(i,j) ((i-1)*m+j)
#define Ck(i,j) (mp[i][j]&&1<=(i)&&(i)<=n&&1<=(j)&&(j)<=m)
const int N=10005,M=N<<2; int n,m,vis[N],Time,Enum,H[N],nxt[M],to[M],lk[N],q[N];
bool mp[105][105],ok[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
#define AE(u,v) to[++Enum]=v,nxt[Enum]=H[u],H[u]=Enum,to[++Enum]=u,nxt[Enum]=H[v],H[v]=Enum
bool OK(int x)
{
vis[x]=Time;
for(int i=H[x],v; i; i=nxt[i])
if(vis[v=to[i]]!=Time)
{
vis[v]=Time;
if(!lk[v]||OK(lk[v])) return lk[v]=x,lk[x]=v;//两个都有啊
}
return 0;
}
void DFS(int x)
{
ok[x]=1;
for(int i=H[x]; i; i=nxt[i])
if(lk[to[i]] && !ok[lk[to[i]]]/*vis[lk[to[i]]]!=Time*/) DFS(lk[to[i]]);
} int main()
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
{
register char c=gc();
for(; c!='.'&&c!='#'; c=gc());
for(int j=1; j<=m; ++j,c=gc()) mp[i][j]=c=='.';
}
int t=0;
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if(++tot,mp[i][j])
{
if(mp[i+1][j]/*i+1<=n*/) AE(tot,tot+m);
if(mp[i][j+1]) AE(tot,tot+1);
}
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if((++tot,mp[i][j]) && !lk[tot]/*!*/ && (++Time,!OK(tot)))
q[++t]=tot;
if(!t) return puts("LOSE"),0;
puts("WIN");
for(int i=1; i<=t; ++i) DFS(q[i]);
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if(ok[++tot]) printf("%d %d\n",i,j); return 0;
}

BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)的更多相关文章

  1. BZOJ:1443: [JSOI2009]游戏Game

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1443 反正不看题解我是完全想不出系列…… 先把棋盘黑白染色,也就是同一对角线上颜色相同,使 ...

  2. BZOJ 1443 [JSOI2009]游戏Game ——博弈论

    好题. 首先看到棋盘,先黑白染色. 然后就是二分图的经典模型. 考虑最特殊的情况,完美匹配,那么先手必胜, 因为无论如何,先手走匹配边,后手无论走哪条边,总有对应的匹配边. 如果在不在最大匹配中出发, ...

  3. 【BZOJ】1443: [JSOI2009]游戏Game

    [算法]博弈论+二分图匹配(最大流) [题解]方格图黑白染色得到二分图, 二分图博弈:当起点不属于某个最大匹配时,后手必胜. 问题转化为那些点不属于某个最大匹配. 先找到一个最大匹配,非匹配点加入答案 ...

  4. BZOJ.2437.[NOI2011]兔兔与蛋蛋游戏(二分图博弈 匈牙利)

    题目链接 首先空格的移动等价于棋子在黑白格交替移动(设起点移向白格就是黑色),且不会走到到起点距离为奇数的黑格.到起点距离为偶数的白格(删掉就行了),且不会重复走一个格子. (然后策略就同上题了,只不 ...

  5. BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】

    题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...

  6. bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

    noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...

  7. BZOJ 1854: [Scoi2010]游戏(二分图匹配/并查集)

    题面: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 题解: 1.二分图匹配: 首先我们发现每件装备只能在两种属性中选一种.因此,我们以每 ...

  8. 【BZOJ1443】游戏(二分图匹配,博弈论)

    [BZOJ1443]游戏(二分图匹配,博弈论) 题面 BZOJ 题解 很明显的二分图博弈问题. 发现每次移动一定是从一个黑点到达一个白点,或者反过来. 所以可以对于棋盘进行染色然后连边. 考虑一下必胜 ...

  9. BZOJ1443: [JSOI2009]游戏Game

    如果没有不能走的格子的话,和BZOJ2463一样,直接判断是否能二分图匹配 现在有了一些不能走的格子 黑白染色后求出最大匹配 如果是完备匹配,则无论如何后手都能转移到1*2的另一端,故先手必输 否则的 ...

随机推荐

  1. Python3 configparse模块(配置)

    ConfigParser模块在python中是用来读取配置文件,配置文件的格式跟windows下的ini配置文件相似,可以包含一个或多个节(section),每个节可以有多个参数(键=值). 注意:在 ...

  2. NMS和soft-nms算法

    非极大值抑制算法(nms) 1. 算法原理 非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素. 2. 3邻域情况下NMS的实现 3邻 ...

  3. eclipse中运行项目出现空白错误提示解决办法

    别人所给出的解决办法:https://blog.csdn.net/fzdg2019/article/details/79384539 两个办法: 方法一:配置环境变量 方法二:修改eclipse安装目 ...

  4. 高级 Java 必须突破的 10 个知识点!

    1.Java基础技术体系.JVM内存分配.垃圾回收.类装载机制.性能优化.反射机制.多线程.网络编程.常用数据结构和相关算法. 2.对面向对象的软件开发思想有清晰的认识.熟悉掌握常用的设计模式. 3. ...

  5. cas中总是得不到返回的属性

    cas可以登录,但是得不到返回的属性,后来看日志才知道数据库链接报错,原来URL中少了jdbc:.真是愚蠢的错误,记录之,警之!

  6. Ex 5_22 在此我们基于以下性质给出一个新的最小生成树算法..._第九次作业

    (a)设环的顶点集为V, e(u,v)为权最重的边,若把V分成两部分V1,V2.其中V1包含u,V2包含v,因为V是一个环,因此,至少存在两条把u和v连接起来的边.因此,除了e之外,至少还存在另一条边 ...

  7. Android动态控制状态栏显示和隐藏

    记得之前有朋友在留言里让我写一篇关于沉浸式状态栏的文章,正巧我确实有这个打算,那么本篇就给大家带来一次沉浸式状态栏的微技巧讲解. 其实说到沉浸式状态栏这个名字我也是感到很无奈,真不知道这种叫法是谁先发 ...

  8. java开发之——[接口回调]

    一.回调的含义和用途 1. 什么是回调? 一般来说,模块之间都存在一定的调用关系,从调用方式上看,可以分为三类:同步调用.异步调用和回调.同步调用是一种阻塞式调用,即在函数A的函数体里通过书写函数B的 ...

  9. 恋爱Linux(Fedora20)1——安装开启ssh服务

    1) 安装openssh-server # yum install openssh-server 2) 查看是否已成功安装openssh-server # rpm -qa | grep openssh ...

  10. python 全栈开发,Day22(封装,property,classmethod,staticmethod)

    一.封装 封装 : 广义上的 :把一堆东西装在一个容器里 狭义上的 :会对一种现象起一个专门属于它的名字 函数和属性装到了一个非全局的命名空间 —— 封装 隐藏对象的属性和实现细节,仅对外提供公共访问 ...