BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)
\(Description\)
一个\(N*M\)的有障碍的棋盘,先手放置棋子后,从后手开始轮流移动棋子,不能走重复的位置,不能移动的输。求在哪些位置放棋子是先手必胜的。
\(Solution\)
依旧先黑白染色,移动棋子对应一个匹配。
那么原图有两种情况:
一是存在完美匹配:那么无论先手选哪个点开始,假设是S集合某点,那么后手沿匹配边走,先手要么沿匹配边再走到S集合某点,要么没法走。即先手必败;
二是不存在完美匹配:
1.先手从最大匹配点开始,好像胜负情况都有,先不考虑;
2.先手从非最大匹配点开始,后手只能走到一个最大匹配点(若能走到非匹配点则又是一个匹配,与最大匹配矛盾),然后先手再走匹配边,发现后手只能走匹配边。
因为当前点如果存在非匹配边,则与起点那个非匹配点又形成了一条增广路,与最大匹配矛盾。
那这又成了情况一了,即后手必败。
即如果起点是非最大匹配点则必胜。起点只要在某种最大匹配下不是最大匹配点就满足。
再看情况二的1,如果起点可以不是最大匹配点,则先手必胜。否则先手必败,和情况二的2的结论一样。
现在问题是判断有哪些点不一定在最大匹配中。首先跑一遍最大匹配,未匹配的点肯定是。
然后这些未匹配点\(x\)可以替换掉邻接点\(v\)的一条匹配边,即\(match[v]\)也可以不在最大匹配中(原先的匹配边\(v\rightarrow match[v]\)替换为\(v\rightarrow x\))。
对未匹配点DFS一遍就可以了。
复杂度在于匹配,\(O(n^2)\)?
刚想起来最大匹配要拆点。。或者黑白染色?也不用拆点或者染色,每个点向四周都连边即可。
不拆点要注意match[]/lk[]这个数组对两边的集合都要给它赋值,匹配(bool OK())的时候保证它之前没有匹配。。
做题前已经忘了最大匹配长什么样了...
//1680kb 256ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 350000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define ID(i,j) ((i-1)*m+j)
#define Ck(i,j) (mp[i][j]&&1<=(i)&&(i)<=n&&1<=(j)&&(j)<=m)
const int N=10005,M=N<<2;
int n,m,vis[N],Time,Enum,H[N],nxt[M],to[M],lk[N],q[N];
bool mp[105][105],ok[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
#define AE(u,v) to[++Enum]=v,nxt[Enum]=H[u],H[u]=Enum,to[++Enum]=u,nxt[Enum]=H[v],H[v]=Enum
bool OK(int x)
{
vis[x]=Time;
for(int i=H[x],v; i; i=nxt[i])
if(vis[v=to[i]]!=Time)
{
vis[v]=Time;
if(!lk[v]||OK(lk[v])) return lk[v]=x,lk[x]=v;//两个都有啊
}
return 0;
}
void DFS(int x)
{
ok[x]=1;
for(int i=H[x]; i; i=nxt[i])
if(lk[to[i]] && !ok[lk[to[i]]]/*vis[lk[to[i]]]!=Time*/) DFS(lk[to[i]]);
}
int main()
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
{
register char c=gc();
for(; c!='.'&&c!='#'; c=gc());
for(int j=1; j<=m; ++j,c=gc()) mp[i][j]=c=='.';
}
int t=0;
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if(++tot,mp[i][j])
{
if(mp[i+1][j]/*i+1<=n*/) AE(tot,tot+m);
if(mp[i][j+1]) AE(tot,tot+1);
}
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if((++tot,mp[i][j]) && !lk[tot]/*!*/ && (++Time,!OK(tot)))
q[++t]=tot;
if(!t) return puts("LOSE"),0;
puts("WIN");
for(int i=1; i<=t; ++i) DFS(q[i]);
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if(ok[++tot]) printf("%d %d\n",i,j);
return 0;
}
BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)的更多相关文章
- BZOJ:1443: [JSOI2009]游戏Game
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1443 反正不看题解我是完全想不出系列…… 先把棋盘黑白染色,也就是同一对角线上颜色相同,使 ...
- BZOJ 1443 [JSOI2009]游戏Game ——博弈论
好题. 首先看到棋盘,先黑白染色. 然后就是二分图的经典模型. 考虑最特殊的情况,完美匹配,那么先手必胜, 因为无论如何,先手走匹配边,后手无论走哪条边,总有对应的匹配边. 如果在不在最大匹配中出发, ...
- 【BZOJ】1443: [JSOI2009]游戏Game
[算法]博弈论+二分图匹配(最大流) [题解]方格图黑白染色得到二分图, 二分图博弈:当起点不属于某个最大匹配时,后手必胜. 问题转化为那些点不属于某个最大匹配. 先找到一个最大匹配,非匹配点加入答案 ...
- BZOJ.2437.[NOI2011]兔兔与蛋蛋游戏(二分图博弈 匈牙利)
题目链接 首先空格的移动等价于棋子在黑白格交替移动(设起点移向白格就是黑色),且不会走到到起点距离为奇数的黑格.到起点距离为偶数的白格(删掉就行了),且不会重复走一个格子. (然后策略就同上题了,只不 ...
- BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】
题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...
- bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势
noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...
- BZOJ 1854: [Scoi2010]游戏(二分图匹配/并查集)
题面: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 题解: 1.二分图匹配: 首先我们发现每件装备只能在两种属性中选一种.因此,我们以每 ...
- 【BZOJ1443】游戏(二分图匹配,博弈论)
[BZOJ1443]游戏(二分图匹配,博弈论) 题面 BZOJ 题解 很明显的二分图博弈问题. 发现每次移动一定是从一个黑点到达一个白点,或者反过来. 所以可以对于棋盘进行染色然后连边. 考虑一下必胜 ...
- BZOJ1443: [JSOI2009]游戏Game
如果没有不能走的格子的话,和BZOJ2463一样,直接判断是否能二分图匹配 现在有了一些不能走的格子 黑白染色后求出最大匹配 如果是完备匹配,则无论如何后手都能转移到1*2的另一端,故先手必输 否则的 ...
随机推荐
- 使用Idea初始化SpringMvc项目
(1) (2) (3) (4) (5)感谢http://www.cnblogs.com/feiyujun/p/6537510.html (6)
- 【Mysql sql inject】【入门篇】SQLi-Labs使用 part 1【01-11】
人员流动性过大一直是乙方公司痛点.虽然试用期间都有岗前学习,但老员工忙于项目无暇带新人成长,入职新人的学习基本靠自己不断摸索.期望看相关文档就可以一蹴而是不现实的.而按部就班的学习又很难短期内将知识有 ...
- GetStockObject 理解
原文地址:https://www.cnblogs.com/Clingingboy/archive/2013/04/13/3017952.html GetStockObject在图形编程中是常用API之 ...
- jquery引入
网络地址:http://code.jquery.com/jquery-2.2.0.min.js 在需要的页面中直接使用网络地址,就不需要本地文件 <script type="text/ ...
- AndroidStudio中builde.gradle文件详解
Android Studio是采用Gradle来构建项目的,一个Android项目中包含两个build.gradle文件,如下图: (1)最外层目录下build.gradle文件 最外层目录下 ...
- 移动端适配js
第一种.参考网易的 (我现在用这个多) https://www.cnblogs.com/well-nice/p/5509589.html var deviceWidth = document.docu ...
- oracle 进阶之model子句
本博客是自己在学习和工作途中的积累与总结,仅供自己参考,也欢迎大家转载,转载时请注明出处. http://www.cnblogs.com/king-xg/p/6692841.html 一, mode ...
- ubuntu chrome 安装ubuntu16.04 : google浏览器安装及离线插件安装(谷歌访问助手)
1.https://blog.csdn.net/cheneykl/article/details/79187954 https://download.oracle.com/otn-pub/java/j ...
- CSS----布局注意事项
1.当div标签中含有子标签,如果div标签的大小是被div中的子标签撑起来的,那么可能布局(之后)可能就会出现问题(if 父级div中没有border,padding,inlinecontent,子 ...
- python接口自动化测试三:代码发送HTTP请求
get请求: 1.get请求(无参数): 2.get请求(带参数): 接口地址:http://japi.juhe.cn/qqevaluate/qq 返回格式:json 请求方式:get post 请求 ...