pca算法实现
pca基础知识不了解的可以先看下一这篇博客:https://www.cnblogs.com/lliuye/p/9156763.html
具体算法实现如下:
import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,]
y_data = data[:,]
plt.scatter(x_data,y_data)
plt.show()
print(x_data.shape)
# 数据中心化
def zeroMean(dataMat):
# 按列求平均,即各个特征的平均
meanVal = np.mean(dataMat, axis=)
newData = dataMat - meanVal
return newData, meanVal
newData,meanVal=zeroMean(data)
print(newData.shape)
# np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。
covMat = np.cov(newData, rowvar=)#因为是行作为样本,所以列作为特征,得到的协方差是2*
# 协方差矩阵
print(covMat)
# np.linalg.eig求矩阵的特征值和特征向量
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
# 特征值
print(eigVals)
# 特征向量
print(eigVects.shape)
# 对特征值从小到大排序
eigValIndice = np.argsort(eigVals)
eigValIndice
top =
# 最大的n个特征值的下标
n_eigValIndice = eigValIndice[-:-(top+):-]
print(n_eigValIndice)
# 最大的n个特征值对应的特征向量
n_eigVect = eigVects[:,n_eigValIndice]
print(n_eigVect.shape)
# 低维特征空间的数据
lowDDataMat = newData*n_eigVect#原始数据投射到选取的特征向量上
print(lowDDataMat.shape)#低纬数据
# 利用低纬度数据来重构数据
reconMat = (lowDDataMat*n_eigVect.T) + meanVal#降维的逆操作
reconMat
# 载入数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,]
y_data = data[:,]
plt.scatter(x_data,y_data) # 重构的数据
x_data = np.array(reconMat)[:,]
y_data = np.array(reconMat)[:,]
plt.scatter(x_data,y_data,c='r')
plt.show() plt.show()
关于np.cov的用法详细如下:
np.cov(x)12
np.cov(x)*3 #output:512
np.cov(x)12
其中对角线元素是每个维度的方差,非对角线上的元素则是不同维度间的协方差。
x=X[0:2]
y=X[2:4]
print(np.cov(X))
print(np.cov(x,y))12345
可以看出两者的输出是相同的。因此所谓的np.cov(X)其实就是把np.cov(x,y)中两个变量所有的维度纵向拼接在一起作为X参与运算。
pca算法实现的更多相关文章
- PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...
- 模式识别(1)——PCA算法
作者:桂. 时间:2017-02-26 19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处, ...
- 三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...
- 降维之pca算法
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的 ...
- PCA算法学习(Matlab实现)
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩 ...
- OpenCV学习(35) OpenCV中的PCA算法
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html 对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...
- 我所认识的PCA算法的princomp函数与经历 (基于matlab)
我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Compone ...
- PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...
- PCA算法理解及代码实现
github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维 在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大, ...
- Python使用三种方法实现PCA算法[转]
主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句 ...
随机推荐
- PHP之数据连接方法(二)
首先API接口,无非就是通过该程序去处理数据的数据,及判断数据的准确性. 因此我们需要一个DBTool的操作方法. DBTool地址:https://github.com/gfarmhuang/DBT ...
- 运行Hama实例PageRank
- 文件上传到ftp服务工具类
直接引用此java工具类就好 import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundExcep ...
- 论文学习——《Good View Hunting: Learning Photo Composition from Dense View Pairs》
论文链接:http://www.zijunwei.org/papers/cvpr18-photo-composition.pdf 代码及数据集链接:https://www3.cs.stonybrook ...
- vs2010用iis5作为调试服务器从而允许非本机电脑访问项目网站
工作的时候经常遇见这2种情况 1,和设备端的同事调程序,但是他们却不能访问vs自带的web服务器 2,写好的程序在vs中运行一点问题都没有,一发布到iis就问题一大堆 后来在终于有了一个比较好的解决办 ...
- 在jquery中应该使用prop方法来获取和设置checked属性,不应该使用attr。
在jquery中应该使用prop方法来获取和设置checked属性,不应该使用attr. $("#checkAll").prop("checked", true ...
- Shell [[]]详解:检测某个条件是否成立
[[ ]]是 Shell 内置关键字,它和 test 命令类似,也用来检测某个条件是否成立. test 能做到的,[[ ]] 也能做到,而且 [[ ]] 做的更好:test 做不到的,[[ ]] 还能 ...
- leetcode-第12周双周赛-5111-分享巧克力
题目描述: 方法: class Solution: def maximizeSweetness(self, A: List[int], K: int) -> int: def possible( ...
- thinkphp 错误调试
如果需要我们可以使用E方法输出错误信息并中断执行,例如: //输出错误信息,并中止执行 E($msg); 原3.1版本中的halt方法已经废弃,请使用E函数代替.
- luoguP1415 拆分数列 [dp]
题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时,字典序最大的解(即先要满足最后一个数最小:如果有多组解,则使得第一个数尽量大:如 ...