跟简单的dp,设f[i]表示前i只最多打几只,因为起点不确定,所以f[i]可以从任意abs(x[i]-x[j])+abs(y[i]-y[j])<=abs(time[i]-time[j])的j<i转移:f[i]=max(f[j]+1);

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int N=10005;
int n,m,x[N],y[N],z[N],f[N],ans=1,tot;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
int a=read(),b=read(),c=read();
if(c<=n&&c>=1&&b<=n&&b>=1)
z[++tot]=a,x[tot]=b,y[tot]=c;
}
for(int i=1;i<=m;i++)
f[i]=1;
for(int i=2;i<=tot;i++)
{
for(int j=1;j<i;j++)
if(abs(x[i]-x[j])+abs(y[i]-y[j])<=abs(z[i]-z[j]))
f[i]=max(f[i],f[j]+1);
ans=max(ans,f[i]);
}
printf("%d\n",ans);
return 0;
}

bzoj 1207: [HNOI2004]打鼹鼠【dp】的更多相关文章

  1. BZOJ 1207: [HNOI2004]打鼹鼠( dp )

    dp.. dp[ i ] = max( dp[ j ] + 1 ) ------------------------------------------------------------------ ...

  2. BZOJ 1207: [HNOI2004]打鼹鼠【妥妥的n^2爆搜,dp】

    1207: [HNOI2004]打鼹鼠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3259  Solved: 1564[Submit][Statu ...

  3. BZOJ 1207 [HNOI2004]打鼹鼠:dp【类似最长上升子序列】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1207 题意: 有一个n*n的网格,接下来一段时间内会有m只鼹鼠出现. 第i只鼹鼠会在tim ...

  4. bzoj 1207: [HNOI2004]打鼹鼠 (dp)

    var n,m,i,j,ans:longint; x,y,time,f:..]of longint; begin readln(n,m); to m do readln(time[i],x[i],y[ ...

  5. 洛谷 P2285 BZOJ 1207 [HNOI2004]打鼹鼠

    题目描述 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿牛编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气. ...

  6. bzoj 1207 [HNOI2004]打鼹鼠 小技巧

    Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探 ...

  7. bzoj 1207: [HNOI2004]打鼹鼠

    1207: [HNOI2004]打鼹鼠 Time Limit: 10 Sec  Memory Limit: 162 MB Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜 ...

  8. 1207. [HNOI2004]打鼹鼠【线性DP】

    Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探 ...

  9. BZOJ 1212: [HNOI2004]L语言( dp + trie )

    因为单词很短...用trie然后每次dp暴力查找...用哈希+dp应该也是可以的.... ------------------------------------------------------- ...

随机推荐

  1. 关于 redux-saga 中 take 使用方法详解

    本文介绍了关于redux-saga中take使用方法详解,分享给大家,具体如下: 带来一个自己研究好久的API使用方法. redux-saga中effect中take这个API使用方式,用的多的是ca ...

  2. linux系列之-—03 压缩和解压缩命令

    tar命令 解包:tar zxvf FileName.tar 打包:tar czvf FileName.tar DirName gz命令 解压1:gunzip FileName.gz 解压2:gzip ...

  3. DirectX11 学习笔记5 - D3DXMath 库

    directx11 特别推出了一个数学库 用于向量 矩阵的计算.并且使用128位 同一时候计算4条32位数据 (SIMD) 之前基本是用的directx10math.h这个头文件.  这个数学库既然是 ...

  4. android binder 机制三(匿名Service)

    什么是匿名Service?凡是没有到ServiceManager上注冊的Service,都是匿名Service. 还是拿上一篇的样例来举例,看代码: status_t MediaPlayer::set ...

  5. 【linux驱动分析】之dm9000驱动分析(三):sk_buff结构分析

    [linux驱动分析]之dm9000驱动分析(一):dm9000原理及硬件分析 [linux驱动分析]之dm9000驱动分析(二):定义在板文件里的资源和设备以及几个宏 [linux驱动分析]之dm9 ...

  6. Intel processor brand names-Xeon,Core,Pentium,Celeron----Celeron

    http://en.wikipedia.org/wiki/Celeron Celeron From Wikipedia, the free encyclopedia     Celeron Produ ...

  7. HDU 1423 Greatest Common Increasing Subsequence(LICS入门,只要求出最长数)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  8. 李洪强经典面试案例33-如何面试 iOS 工程师

    如何面试 iOS 工程师   推荐序 私下和很多朋友交流过这个话题,大部分求职者认为,我能做基本的 iOS 开发工作,就达到公司的要求了,殊不知公司招聘员工,更希望的是这个人能够在关键时候能够发挥一般 ...

  9. arm-linux交叉编译环境搭建

    1.解压交叉编译工具链包 tar jxvf EABI-4.3.3_EmbedSky_20100610.tar.bz2 (笔者将交叉编译工具链包放在”/home ”目录下) 解压后会生成两个目录: [r ...

  10. Codeforces 8VC Venture Cup 2016 - Elimination Round F. Group Projects 差分DP*****

    F. Group Projects   There are n students in a class working on group projects. The students will div ...