线段树区间更新,区间统计+离散化 POJ 2528 Mayor's posters
题意:有一个非常长的板子(10000000长),在上面贴n(n<=10000)张海报。问最后从外面能看到几张不同的海报。
由于板子有10000000长,直接建树肯定会爆,所以须要离散化处理,对于每张海报,有两个端点值,最后能看到几张海报跟他们的端点值的相对大小有关,跟绝对大小无关。所以就把全部海报的端点离散化处理,总共2n个端点,排序去重,相应p(p<=2n)个点。
然后建树,由于p不超过20000,所以这样就能够接受了。区间更新时,由于我们仅仅关心最外面海报的颜色有多少种。所以向下传递节点信息的时候把上面节点的信息去掉。这样在查询的时候就能方便一些,用一个标记数组记录总共同拥有多少种颜色就能够了。
代码:
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std; #define PB push_back
#define MP make_pair #define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;} /*#ifdef HOME
freopen("in.txt","r",stdin);
#endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME int Scan()
{
int res = 0, ch, flag = 0; if((ch = getchar()) == '-') //推断正负
flag = 1; else if(ch >= '0' && ch <= '9') //得到完整的数
res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9' )
res = res * 10 + ch - '0'; return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/
int data[100000+10]; int n;
int a[20010];
int b[20010];
int u[40000]; void pushdown(int rt)
{
if(data[rt]!=-1)
{
data[rt<<1]=data[(rt<<1)+1]=data[rt];
data[rt]=-1;
}
}
void build(int l,int r,int rt)
{
if(l==r)
{
data[rt]=-1;
return;
}
int m=(l+r)>>1;
build(l,m,rt<<1);
build(m+1,r,(rt<<1)+1);
}
void update(int l,int r,int rt,int a,int b,int c)
{
if(a<=l&&r<=b)
{
data[rt]=c;
return;
}
pushdown(rt);
int m=(l+r)>>1;
if(a<=m)
update(l,m,rt<<1,a,b,c);
if(b>m)
update(m+1,r,(rt<<1)+1,a,b,c);
}
int vis[20010];
int sum;
void query(int l,int r,int rt)
{if(data[rt]!=-1)
{
if(!vis[data[rt]])
{
vis[data[rt]]=1;
sum++;
}
return;
}
int m=(l+r)>>1;
query(l,m,rt<<1);
query(m+1,r,(rt<<1)+1); } int main()
{
int c;
RI(c);
while(c--)
{RI(n);
REP(i,0,n)
{
RII(a[i],b[i]);
}
REP(i,0,n)
{
u[i]=a[i];
u[i+n]=b[i];
}
sort(u,u+2*n);
int p=unique(u,u+2*n)-u;
REP(i,0,n)
{int t=lower_bound(u,u+p,a[i])-u;
a[i]=t+1;
t=lower_bound(u,u+p,b[i])-u;
b[i]=t+1;
}
build(1,p,1);
REP(i,0,n)
{
update(1,p,1,a[i],b[i],i);
}
MS0(vis);
sum=0;
query(1,p,1);
printf("%d\n",sum);
} return 0;
}
线段树区间更新,区间统计+离散化 POJ 2528 Mayor's posters的更多相关文章
- POJ 2528 Mayor's posters 离散化+线段树
题目大意:给出一些海报和贴在墙上的区间.问这些海报依照顺序贴完之后,最后能后看到多少种海报. 思路:区间的范围太大,然而最多仅仅会有10000张海报,所以要离散化. 之后用线段树随便搞搞就能过. 关键 ...
- POJ 2528 Mayor's posters 离散化和线段树题解
本题就是要往墙上贴海报,问最后有多少可见的海报. 事实上本题的难点并非线段树,而是离散化. 由于数据非常大,直接按原始数据计算那么就会爆内存和时间的. 故此须要把数据离散化. 比方有海报1 6 7 ...
- poj 2528 Mayor's posters
这个题意是市长竞选,然后每一个人都能够贴广告牌.能够覆盖别人的看最后剩几个广告牌 这题目想了两个多小时,最后忍不住看了一下题解. 发现仅仅是简单地hash 和线段树成段更新 由于有10000个人竞选 ...
- poj 2528 Mayor's posters 【线段树 + 离散化】
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 50643 Accepted: 14675 ...
- POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)
POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...
- POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)
POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...
- HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)
HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...
- hdu 1166线段树 单点更新 区间求和
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- hdu2795(线段树单点更新&区间最值)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...
随机推荐
- 剑指offer重构二叉树 给出二叉树的前序和后序重构二叉树
题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树. 假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4, ...
- WIN10配置instantclient
在PLSQL Developer目录下建立如下bat文件,替换其快捷方式,启动PLSQL Developer: @echo off set path=C:\instantclient-basic-nt ...
- 基于顺序链表的栈的顺序存储的C风格实现
头文件: #ifndef _SEQSTACK_H_ #define _SEQSTACK_H_ typedef void SeqStack; //创建一个栈 SeqStack* SeqStack_Cre ...
- CentOS使用dnf安装Redis
1.查询可用的redis安装包 输入以下命令: dnf list redis 输出: redis.x86_64 3.2.10-2.el7 2.安装软件 输入以下命令: dnf install redi ...
- 4C. Stars
4C. Stars Time Limit: 2000ms Case Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO forma ...
- 九度oj 题目1533:最长上升子序列
题目描述: 给定一个整型数组, 求这个数组的最长严格递增子序列的长度. 譬如序列1 2 2 4 3 的最长严格递增子序列为1,2,4或1,2,3.他们的长度为3. 输入: 输入可能包含多个测试案例. ...
- CocoaAsyncSocket一个第三方Socket库
github地址:https://github.com/robbiehanson/CocoaAsyncSocket github上的不完整,cocochina也有demohttp://code4app ...
- [BZOJ2523][Ctsc2001]聪明的学生
[BZOJ2523][Ctsc2001]聪明的学生 试题描述 一位教授逻辑学的教授有三名非常善于推理且精于心算的学生A,B和C.有一天,教授给他们三人出了一道题:教授在每个人脑门上贴了一张纸条并告诉他 ...
- haskell 乱搞笔记[原创]
脑洞时间:为什么世界上有那么多程序语言,那是腐朽的资本主义为了增加广大人民学习成本以及编译原理太过普及造成的,建议大学取消编译原理的一切课程,并挥起奥姆休的剃刀,把所有程序语言统统踢了,除机器 ...
- 【二叉搜索树】poj 1577 Falling Leaves
http://poj.org/problem?id=1577 [题意] 有一颗二叉搜索树,每次操作都把二叉搜索树的叶子从左到右揪掉(露出来的父节点就变成了新的叶子结点) 先给出了揪掉的叶子序列(多个字 ...