【bzoj1059】[ZJOI2007]矩阵游戏 二分图最大匹配
题目描述
输入
输出
输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。
样例输入
2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
样例输出
No
Yes
题解
二分图最大匹配
本题和“给你一些黑色格子,问能否选出n个,使得每行、每列有且仅有一个黑色格子”是相同的。
证明:
必要性:假设不能使得每行、每列有且仅有至少一个黑色格子,那么一定存在某行或列不存在黑色格子,无论如何交换,该行或列都不存在黑色格子,故无解。必要性证毕。
充分性:如果存在某种选择方式使得每行、每列都有且仅有一个黑色格子,那么我们只考虑这n个格子,无论如何交换它们的行或列,每行、每列依然都有且仅有一个黑色格子。从1到n考虑,对于第i行,如果该行不合法,那么一定存在i+1~n行的某行中第i列为黑色。此时只需要交换这两列即可。进行到第n行时,由于前n-1行和前n-1列都已经有黑色格子,那么最后一个黑色格子一定存在于第n行第n列。故所有每行、每列有且仅有一个黑色格子的情况均有解。充分性证毕。
于是这道看起来十分复杂的题就变成了经典二分图傻*题,两个集合分别为行和列,黑色节点的行和列之间连边,问最小点覆盖是否为n。转化为最大匹配求即可。
这里为了效率跑了dinic。
#include <cstdio>
#include <cstring>
#include <queue>
#define N 500
#define M 200000
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
int n , i , j , x;
scanf("%d" , &n) , s = 0 , t = 2 * n + 1;
memset(head , 0 , sizeof(head)) , cnt = 1;
for(i = 1 ; i <= n ; i ++ ) add(s , i , 1) , add(i + n , t , 1);
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= n ; j ++ )
{
scanf("%d" , &x);
if(x) add(i , j + n , 1);
}
}
while(bfs()) n -= dinic(s , 1 << 30);
printf("%s\n" , n ? "No" : "Yes");
}
return 0;
}
【bzoj1059】[ZJOI2007]矩阵游戏 二分图最大匹配的更多相关文章
- BZOJ 1059 [ZJOI2007]矩阵游戏 (二分图最大匹配)
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5281 Solved: 2530[Submit][Stat ...
- [bzoj1059] [ZJOI2007] 矩阵游戏 (二分图匹配)
小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选 ...
- BZOJ1059 [ZJOI2007]矩阵游戏 二分图匹配 匈牙利算法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1059 题意概括 有一个n*n(n<=200)的01矩阵,问你是否可以通过交换整行和整列使得左 ...
- [luogu1129 ZJOI2007] 矩阵游戏 (二分图最大匹配)
传送门 Description Input Output Sample Input 2 2 0 0 0 1 3 0 0 1 0 1 0 1 0 0 Sample Output No Yes HINT ...
- BZOJ1059 ZJOI2007 矩阵游戏 【二分图匹配】
BZOJ1059 ZJOI2007 矩阵游戏 Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一 ...
- BZOJ [ZJOI2007]矩阵游戏(二分图匹配)
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6390 Solved: 3133[Submit][Stat ...
- bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1891 Solved: 919[Submit][Statu ...
- [bzoj1059][ZJOI2007]矩阵游戏_二分图最大匹配
矩阵游戏 bzoj-1059 ZJOI-2007 题目大意:给定一个n*n的棋盘,上面有一些格子被染黑,剩下都是白色.你每次可以交换两列或者两行,问你能否通过一系列操作使得棋盘的主对角线上的格子全是黑 ...
- bzoj 1059: [ZJOI2007]矩阵游戏 [二分图][二分图最大匹配]
Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行 ...
随机推荐
- 使用vscode软件运行zebrajs框架小结
最近在研究使用zebrajs框架,用vscode编辑器进行开发.vsc这个编辑器说起来还是很强大的,就是支持各种系统的多种语言开发.用于前端的话可以直接在编辑器上边调试javascript,就是需要n ...
- MFC双缓冲解决图象闪烁[转]
转载网上找到的一篇双缓冲的文章,很好用.http://www.cnblogs.com/piggger/archive/2009/05/02/1447917.html__________________ ...
- Objective-C Composite Objects
We can create subclass within a class cluster that defines a class that embeds within it an object. ...
- JMeter3.2入门使用教程
JMeter3.2入门使用教程 背景说明 1.1. 背景简介 JMeter是Apache软件基金会下的一个开源项目,纯java开发的应用工具,可以作为进行负载和压力测试的工具来使用.从最开始时被设计成 ...
- MySQL检查死锁简介
- cocoapods学习
1.安装 http://stackoverflow.com/questions/16459028/rvm-install-error-running-requirements-osx-port-ins ...
- IE6 bug总结
IE6bug总结: 1.双边距bug产生原因 margin的方向与浮动的方向相同 解决方法: 浮动的元素身上加 display:inline; ---------------------------- ...
- Web开发者必须知道的10个jQuery代码片段
在过去的几年中,jQuery一直是使用最为广泛的JavaScript脚本库.今天我们将为各位Web开发者提供10个最实用的jQuery代码片段,有需要的开发者可以保存起来. 1.检测Internet ...
- syslog(),closelog()与openlog()--日志操作函数 (2)
文章出处:http://blog.chinaunix.net/uid-26583794-id-3166083.html 守护进程日志的实现 syslogd守护进程用于解决守护进程的日志记录问题,而日志 ...
- java在线聊天项目 实现基本聊天功能后补充的其他功能详细需求分析 及所需要掌握的Java知识基础 SWT的激活方法,swt开发包下载,及破解激活码
补充聊天项目功能,做如下需求分析: 梳理项目开发所需的必要Java知识基础 GUI将使用更快速的swt实现 SWT(Standard Widget Toolkit) Standard Widget T ...