第三次作业-MOOC学习笔记:Python网络爬虫与信息提取
1.注册中国大学MOOC
2.选择北京理工大学嵩天老师的《Python网络爬虫与信息提取》MOOC课程
3.学习完成第0周至第4周的课程内容,并完成各周作业
第一周
Requests库的爬取性能分析
import requests
import time
def getHTMLText(url):
try:
r = requests.get(url,timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return "产生异常" start = time.perf_counter()
for i in range(100):
getHTMLText("https://www.baidu.com")
end = time.perf_counter()
print("抓取100次百度首页内容所用时间:{:.2f}秒".format(end-start))
第二周
中国大学排名定向爬虫
import requests
from bs4 import BeautifulSoup
import bs4 def getHTMLText(url):
try:
r = requests.get(url, timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return "" def fillUnivList(ulist, html):
soup = BeautifulSoup(html, "html.parser")
for tr in soup.find('tbody').children:
if isinstance(tr, bs4.element.Tag):
tds = tr('td')
ulist.append([tds[0].string, tds[1].string, tds[3].string]) def printUnivList(ulist, num):
tplt = "{0:^10}\t{1:{3}^10}\t{2:^10}"
print(tplt.format("排名","学校名称","总分",chr(12288)))
for i in range(num):
u=ulist[i]
print(tplt.format(u[0],u[1],u[2],chr(12288))) def main():
uinfo = []
url = 'https://www.zuihaodaxue.cn/zuihaodaxuepaiming2016.html'
html = getHTMLText(url)
fillUnivList(uinfo, html)
printUnivList(uinfo, 20) # 20 univs
main()
第三周
淘宝商品比价定向爬虫
import requests
import re def getHTMLText(url):
try:
r = requests.get(url, timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return "" def parsePage(ilt, html):
try:
plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"',html)
tlt = re.findall(r'\"raw_title\"\:\".*?\"',html)
for i in range(len(plt)):
price = eval(plt[i].split(':')[1])
title = eval(tlt[i].split(':')[1])
ilt.append([price , title])
except:
print("") def printGoodsList(ilt):
tplt = "{:4}\t{:8}\t{:16}"
print(tplt.format("序号", "价格", "商品名称"))
count = 0
for g in ilt:
count = count + 1
print(tplt.format(count, g[0], g[1])) def main():
goods = '书包'
depth = 3
start_url = 'https://s.taobao.com/search?q=' + goods
infoList = []
for i in range(depth):
try:
url = start_url + '&s=' + str(44*i)
html = getHTMLText(url)
parsePage(infoList, html)
except:
continue
printGoodsList(infoList) main()
股票数据定向爬虫
import requests
from bs4 import BeautifulSoup
import traceback
import re def getHTMLText(url, code="utf-8"):
try:
r = requests.get(url)
r.raise_for_status()
r.encoding = code
return r.text
except:
return "" def getStockList(lst, stockURL):
html = getHTMLText(stockURL, "GB2312")
soup = BeautifulSoup(html, 'html.parser')
a = soup.find_all('a')
for i in a:
try:
href = i.attrs['href']
lst.append(re.findall(r"[s][hz]\d{6}", href)[0])
except:
continue def getStockInfo(lst, stockURL, fpath):
count = 0
for stock in lst:
url = stockURL + stock + ".html"
html = getHTMLText(url)
try:
if html=="":
continue
infoDict = {}
soup = BeautifulSoup(html, 'html.parser')
stockInfo = soup.find('div',attrs={'class':'stock-bets'}) name = stockInfo.find_all(attrs={'class':'bets-name'})[0]
infoDict.update({'股票名称': name.text.split()[0]}) keyList = stockInfo.find_all('dt')
valueList = stockInfo.find_all('dd')
for i in range(len(keyList)):
key = keyList[i].text
val = valueList[i].text
infoDict[key] = val with open(fpath, 'a', encoding='utf-8') as f:
f.write( str(infoDict) + '\n' )
count = count + 1
print("\r当前进度: {:.2f}%".format(count*100/len(lst)),end="")
except:
count = count + 1
print("\r当前进度: {:.2f}%".format(count*100/len(lst)),end="")
continue def main():
stock_list_url = 'https://quote.eastmoney.com/stocklist.html'
stock_info_url = 'https://gupiao.baidu.com/stock/'
output_file = 'D:/BaiduStockInfo.txt'
slist=[]
getStockList(slist, stock_list_url)
getStockInfo(slist, stock_info_url, output_file) main()
第四周
股票数据Scrapy爬虫
import scrapy
import re class StocksSpider(scrapy.Spider):
name = "stocks"
start_urls = ['https://quote.eastmoney.com/stocklist.html'] def parse(self, response):
for href in response.css('a::attr(href)').extract():
try:
stock = re.findall(r"[s][hz]\d{6}", href)[0]
url = 'https://gupiao.baidu.com/stock/' + stock + '.html'
yield scrapy.Request(url, callback=self.parse_stock)
except:
continue def parse_stock(self, response):
infoDict = {}
stockInfo = response.css('.stock-bets')
name = stockInfo.css('.bets-name').extract()[0]
keyList = stockInfo.css('dt').extract()
valueList = stockInfo.css('dd').extract()
for i in range(len(keyList)):
key = re.findall(r'>.*</dt>', keyList[i])[0][1:-5]
try:
val = re.findall(r'\d+\.?.*</dd>', valueList[i])[0][0:-5]
except:
val = '--'
infoDict[key]=val infoDict.update(
{'股票名称': re.findall('\s.*\(',name)[0].split()[0] + \
re.findall('\>.*\<', name)[0][1:-1]})
yield infoDict
4.提供图片或网站显示的学习进度,证明学习的过程。
5.写一篇不少于1000字的学习笔记,谈一下学习的体会和收获。
经过这段时间的学习,我对爬虫有了一定的了解,爬虫就是一个程序,这个程序的目的就是为了抓取万维网信息资源,比如你日常百度、谷歌等搜索引擎,搜索结果就全都依赖来定时获取。通过学习我知道了Python 爬虫架构主要由五个部分组成,分别是调度器、URL管理器、网页下载器、网页解析器、应用程序。学习网络爬虫主要分成抓取,分析,存储三大板块。抓取即当我们在浏览器中输入一个url后回车,会发生以下步骤:一为查找域名对应的IP地址。二为向IP对应的服务器发送请求。三为服务器响应请求,发回网页内容。四是浏览器解析网页内容。网络爬虫要做的,简单来说,就是实现浏览器的功能。通过指定url,直接返回给用户所需要的数据,而不需要一步步人工去操纵浏览器获取。分析就是抓取之后就是对抓取的内容进行分析,你需要什么内容,就从中提炼出相关的内容来。常见的分析工具有正则表达式,BeautifulSoup,lxml等等。分析出我们需要的内容之后,接下来就是存储了。我们可以选择存入文本文件,也可以选择存入。这次课程我还学习了Python第三方库Requests,讲解通过HTTP/HTTPS协议自动从互联网获取数据并向其提交请求的方法;Python第三方库Beautiful Soup,讲解从所爬取HTML页面中解析完整Web信息的方法;Python标准库Re,讲解从所爬取HTML页面中提取关键信息的方法;Python第三方库Scrapy,介绍通过网络爬虫框架构造专业网络爬虫的基本方法。Requests库与HTTP协议的方法,功能是一一对应的,包括以下7个方法:requests.request() 构造一个请求,支撑以下各方法的基础方法 requests.get() 获取HTML网页的主要方法,对应HTTP协议的GET requests.head() 获取HTML网页头信息的方法,对应HTTP协议的HEAD requests.post() 向HTML网页提交POST请求的方法,对应HTTP协议的POST requests.put() 向HTML网页提交PUT请求的方法,对应HTTP协议的PUT requests.patch 向HTML网页提交局部修改,对应HTTP协议的PATCH requests.delete() 向HTML网页提交删除请求的方法,对应HTTP协议的DELETE。在这7种方式中,我们除了直接使用request()方法之外,还可以使用requests库的对应方法。比如说,requests.get()、requests.head()、requests.post()来实现。Urequest()还有13个访问控制的参数分别是params,data,json,headers,cookies 和 auth,files,timeout,proxies,allow_redirects 和 stream,verify 和 cert。crapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。我们需要知道的是,scrapy是一种集成框架,类似于request和xpath这些方法在scrapy都有集成。scrapy中,不同模块负责不同的任务分工。首先Scheduler发出请求(Requests),Downloader负责从互联网上下载内容,将下载好的内容(Responses)交给Spiders进行解析,解析完成后将内容Item返回,当然其中可能会涉及到对于解析后数据的进一步处理,这个任务是在Pipeline中完成的。它通常有两种使用方式,分别为直接在python脚本里定义一个爬取数据的类和创建完整的scrapy项目。这次学习使我受益匪浅,使我对python网络爬虫有了一定的了解。
第三次作业-MOOC学习笔记:Python网络爬虫与信息提取的更多相关文章
- 第3次作业-MOOC学习笔记:Python网络爬虫与信息提取
1.注册中国大学MOOC 2.选择北京理工大学嵩天老师的<Python网络爬虫与信息提取>MOOC课程 3.学习完成第0周至第4周的课程内容,并完成各周作业 4.提供图片或网站显示的学习进 ...
- 第三次作业-Python网络爬虫与信息提取
1.注册中国大学MOOC 2.选择北京理工大学嵩天老师的<Python网络爬虫与信息提取>MOOC课程 3.学习完成第0周至第4周的课程内容,并完成各周作业 过程. 5.写一篇不少于100 ...
- python3.4学习笔记(十七) 网络爬虫使用Beautifulsoup4抓取内容
python3.4学习笔记(十七) 网络爬虫使用Beautifulsoup4抓取内容 Beautiful Soup 是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖 ...
- python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息,抓取政府网新闻内容
python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI,采用Python语言编写 ...
- Python网络爬虫与信息提取
1.Requests库入门 Requests安装 用管理员身份打开命令提示符: pip install requests 测试:打开IDLE: >>> import requests ...
- Python网络爬虫与信息提取笔记
直接复制粘贴笔记发现有问题 文档下载地址//download.csdn.net/download/hide_on_rush/12266493 掌握定向网络数据爬取和网页解析的基本能力常用的 Pytho ...
- 【学习笔记】PYTHON网络爬虫与信息提取(北理工 嵩天)
学习目的:掌握定向网络数据爬取和网页解析的基本能力the Website is the API- 1 python ide 文本ide:IDLE,Sublime Text集成ide:Pychar ...
- Python网络爬虫与信息提取(一)
学习 北京理工大学 嵩天 课程笔记 课程体系结构: 1.Requests框架:自动爬取HTML页面与自动网络请求提交 2.robots.txt:网络爬虫排除标准 3.BeautifulSoup框架:解 ...
- Python网络爬虫与信息提取[request库的应用](单元一)
---恢复内容开始--- 注:学习中国大学mooc 嵩天课程 的学习笔记 request的七个主要方法 request.request() 构造一个请求用以支撑其他基本方法 request.get(u ...
随机推荐
- python学习-52 XML模块
XML模块 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但是json使用起来更简单. 例如:创建一个xml文件 <data> <country name=&q ...
- flannel overlay网络浅析
Flannel基于UDP的网络实现 container-1的route表信息如下(b1): default via 100.96.1.1 dev eth0 100.96.1.0/24 dev eth0 ...
- Qt更新组件出现(“要继续此操作,至少需要一个有效且已启用的储存库”)
Qt更新组件出现(“要继续此操作,至少需要一个有效且已启用的储存库”) 目的: 当时在安装Qt时,有些组件暂时没用着,然后过一段时间后,需要用到某些该组件时,不用删掉重新再安装. 操作: Wind ...
- win10 idea springboot上传镜像到远程docker服务器
1. 开启2375端口,供外部访问docker vim /usr/lib/systemd/system/docker.service 修改ExecStart为下面一行内容 #ExecStart=/us ...
- django类视图as_view()方法解析
使用视图函数时,django完成URL解析之后,会直接把request对象以及URL解析器捕获的参数(比如re_path中正则表达捕获的位置参数或关键字参数)丢给视图函数,但是在类视图中,这些参数不能 ...
- 启动 docker 容器时报错
错误信息: iptables failed: iptables --wait -t nat -A DOCKER -p tcp -d 0/0 --dport 9300 -j DNAT --to-dest ...
- Docker可视化管理工具portainer的简单应用
portainer简介 略 安装portainer $ docker pull portainer/portainer$ docker volume create portainer_data $ d ...
- springboot_1
1. 创建一个spring boot项目可以使用哪些工具 1.1 使用start.spring.io 这是一个网站,可以在这个网站选择你需要的组件,然后会自动生成一个项目文件,你可以将它下载到本地,然 ...
- seo是什么
SEO(Search Engine Optimization):汉译为搜索引擎优化.搜索引擎优化是一种利用搜索引擎的搜索规则来提高目前网站在有关搜索引擎内的自然排名的方式. SEO的目的是:为网站提供 ...
- Extjs 兼容IE8常见问题及解决方法
1. 在IE8中整个页面都打不开,一般情况是: 页面组件中最后一个属性出现了逗号 没有多余的逗号,就很有可能是组件中没有设置renderTo:Ext.getBody(); 2. 页面按钮颜色失效 自定 ...