Educational Codeforces Round 173 (Rated for Div. 2)
题目链接:Dashboard - Educational Codeforces Round 173 (Rated for Div. 2) - Codeforces
总结:翻译插件用不了了,B题题意一直没看懂,C题出思路了好久才写出来,评价为太久没打了。
A. Coin Transformation
tag:模拟
B. Digits
tag:思维
Description:给定两个数\(n, d\),写成一个数\(ddddd...\),由\(n!\)个\(d\)拼接而成。判断\(1-9\)中的奇数有哪些数是它的除数。
Solution:\(1\)显然是;当\(n >= 3\),此时\(n!\)是\(3\)的倍数;当d == 5时,5是;7:当n == 3时,\(111111\)是7的倍数。当\(n>=4\)时,均为\(111111\)的倍数,因此是7的倍数;9和3相同使用数位和判断。
- 长度为x的一连串的数是d的倍数,那么长度为nx的一连串数也一定是d的倍数。
C. Sums on Segments
tag:思维
Description:给定一个数组,里面的元素只有一个元素不是-1或1,其余全是-1或1,求所有不同子数组的和。n <= 1e5。
Solution:先考虑不含特殊数字,那么能够得到的数是一个连续的区间,范围为[min, max];用特殊数字将其分隔为左右两个区间。
- 包含特殊数字的变化区间为,从该数字往左右两端扩展到最大值和最小值。
void solve(){
int n;
cin >> n;
vector<int> a(n);
int idx = 0;
for (int i = 0; i < n; i ++){
cin >> a[i];
if (a[i] != 1 && a[i] != -1){
idx = i;
}
}
int ri = 0, ra = 0;
int mi = 0, ma = 0;
int ans = 0;
int li = 0, la = 0;
if (idx != -1){
for (int i = idx + 1, t = 0; i < n; i ++){
t += a[i];
ri = min(ri, t);
ra = max(ra, t);
}
for (int i = idx - 1, t = 0; i >= 0; i --){
t += a[i];
li = min(li, t);
la = max(la, t);
}
}
int rri = 0, rra = 0;
int ti = 0, ta = 0;
for (int i = idx + 1; i < n; i ++){
ti += a[i];
ta += a[i];
if (ti > 0){
ti = 0;
}
if (ta < 0){
ta = 0;
}
rri = min(rri, ti);
rra = max(rra, ta);
}
int lli = 0, lla = 0;
ti = ta = 0;
for (int i = idx - 1; i >= 0; i --){
ti += a[i];
ta += a[i];
if (ti > 0){
ti = 0;
}
if (ta < 0){
ta = 0;
}
lli = min(lli, ti);
lla = max(lla, ta);
}
set<int> st;
for (int i = lli; i <= lla; i ++)
st.insert(i);
for (int i = rri; i <= rra; i ++)
st.insert(i);
for (int i = li + ri; i <= la + ra; i ++)
st.insert(i + a[idx]);
st.insert(0);
cout << st.size() << endl;
for (auto i : st){
cout << i << " ";
}
cout << endl;
}
D. Problem about GCD
tag:数学
Description:给定三个数l, r, G,需要求出a, b满足l <= a <= b <= r, gcd(a, b) == G,满足|a - b|最大,当有多对答案时,输出a最小的一对,否则输出-1 -1。1 <= l <= r <= 1e18, 1 <= G <= 1e18。
Solution:当G == 1时,等价于找出两个互质的数,两个互质的数之间的差距不会太大,直接暴力枚举即可;当G != 1时,先处于G即可。
trick:两个互质的数之间的差距不会太大,枚举的复杂度大概为\(log^2\)。
void solve(){
int l, r, g;
cin >> l >> r >> g;
l = (l + g - 1) / g;
r = r / g;
for (int len = r - l; len >= 0; len --)
for (int i = l; i + len <= r; i ++){
int j = i + len;
if (gcd(i, j) == 1){
cout << i * g << " " << j * g << endl;
return;
}
}
cout << "-1 -1\n";
}
E. Matrix Transformation
tag:按位思考
Description:给定两个n * m的矩阵a,b,可以对a矩阵执行任意顺序、任意次数的以下两种操作。
- 对第i行的所有元素,按位与上x;
- 对第j列的所有元素,按位或上x;
Solution:将矩阵按位分隔为01矩阵,每一位都是独立的。那么两种操作等价于将一行全变为0,将一列全变为0;
- 为了防止修改原数组,我们反过来操作矩阵b,如果一行全为0或一列全为1则进行标记;注意当一行被标记后,除了该行其余列为1的列需要标记。
- 判断未被标记的元素是否相等即可。
void solve(){
int n, m;
cin >> n >> m;
vector a(n + 1, vector<int>(m + 1)), b(n + 1, vector<int>(m + 1));
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= m; j ++)
cin >> a[i][j];
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= m; j ++)
cin >> b[i][j];
for (int bit = 0; bit <= 30; bit ++){ // 枚举每一位
vector<int> row(n + 1), col(m + 1);
while (1){
auto trow = row, tcol = col;
for (int i = 1; i <= n; i ++){
bool flag = true; // 每一位是否相同
for (int j = 1; j <= m; j ++){
if ((b[i][j] >> bit) & 1 == 1 && tcol[j] == 0){ // 一行全为0
flag = false;
}
}
if (flag){
trow[i] = 1;;
}
}
for (int i = 1; i <= m; i ++){
bool flag = true;
for (int j = 1; j <= n; j ++){
if (((b[j][i] >> bit) & 1) == 0 && trow[j] == 0){ // 一列全为1
flag = false;
}
}
if (flag){
tcol[i] = 1;;
}
}
if (row == trow && col == tcol){
break;
}
row = trow;
col = tcol;
}
for (int i = 1; i <= n; i ++){
if (row[i])
continue;
for (int j = 1; j <= m; j ++){
if (col[j])
continue;
if (((a[i][j] >> bit) & 1) != ((b[i][j] >> bit) & 1)){
cout << "No\n";
return;
}
}
}
}
cout << "Yes\n";
}
Educational Codeforces Round 173 (Rated for Div. 2)的更多相关文章
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Educational Codeforces Round 60 (Rated for Div. 2) 题解
Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...
随机推荐
- SAM4MLLM:结合多模态大型语言模型和SAM实现高精度引用表达分割 | ECCV'24
来源:晓飞的算法工程笔记 公众号,转载请注明出处 论文: SAM4MLLM: Enhance Multi-Modal Large Language Model for Referring Expres ...
- .NET Core 委托底层原理浅谈
简介 .NET通过委托来提供回调函数机制,与C/C++不同的是,委托确保回调是类型安全,且允许多播委托.并支持调用静态/实例方法. 简单来说,C++的函数指针有如下功能限制,委托作为C#中的上位替代, ...
- Edge(Chrome)浏览器插件WordSaver的演示,可以查英语生词并记录生词及所在句子,导出为anki格式
Edge(Chrome)浏览器插件WordSaver的演示,可以查英语生词并记录生词及所在句子,导出为anki格式 Bilibili哔哩哔哩视频
- ThreeJs-01开发环境搭建
写在前面,好久不见各位,之前一段时间因为一些事情有点忙,但从未停止学习的脚步,也屯了很多笔记,会在未来的时间慢慢发出来,从今天开始一起进入WebGis,threeJs目前大前端发展的一个方向开始学习, ...
- canvas 隐写术
http://www.alloyteam.com/2016/03/image-steganography/#prettyPhoto https://www.cnblogs.com/Miracle-ZL ...
- Python3.6,3.7,3.8版本对比
本文列举了Python3.6.3.7.3.8三个版本的新特性,学习它们有助于提高对Python的了解,跟上最新的潮流. 一.Python3.6新特性 1.新的格式化字符串方式 新的格式化字符串方式,即 ...
- Blazor 组件库 BootstrapBlazor 中Tag组件介绍
Tag组件的样子 Tag组件的介绍 Tag组件是一个非常简单的组件. <Tag Icon="fa fa-fw fa-check-circle" Color="Col ...
- Mac文件拷贝Win后的._文件清理
前言 我们在从mac向win拷贝文件后总会多出来 部分 ._ 开头的文件或名为.DS_Store的文件 根据上图在苹果官方社区的回答来看,这些文件存储了主文件的一些资料,图表等数据,如果说未来这些文件 ...
- nginx部署vue项目刷新页面404
location / { root ./html/dist/; index index.html; try_files $uri $uri/ /index.html; } 添加红色配置
- Powershell 源码批判
代码里充斥着过程式编程的搞法:比如这里 Utils.PathIsUnc,分散的到处都是 internal static IEnumerable<string> GetDefaultAvai ...