根据 rubic 打分。

1.

我认为,如果说明 m, n 是自然数,所以最小值是 1 会更清楚。所以 Clarity 我给了 3 分。其他都是 4 分,所以一共是 23 分。

2. 

我给出的分数 0 + 4 + 4 + 4 + 4 + 0。

明显可以看出是计算错误,但由于目前是考察数学思考,并不需要像工程师一样精确。所以这个被视为 slip。

Logical correctness: 2 分。逻辑正确但是计算错误。

Overall valuation: 2 分。同理,逻辑正确但是计算错误。

3. 

我给出的分数:4 + 3 + 4 + 3 + 4 + 2 = 20

下结论那里写的是 n(n+1) 而实际上应该是 n^2 + n + 1。

所以, clarity 是 3分,需要花一点点来弄清楚结论。

State conclusion 是 3 分,需要花一点点来弄清楚结论。

Overall valuation 是 2 分。The answer is fairly good, but there is room for improvement.

4. 

没有理解题意,0分。

5. 

我给出的分数:4 + 4 + 3 + 0 + 4 + 2

开头的结论,少了理由 "By the Division Theorem"

Clarity: 开头的结论,少了理由 "By the Division Theorem",所以给 3 分。你不说原因,会令人困惑。

Opening: 3 分。同样的理由

State conclusion:3 分。有隐含提到,我认为给 2 分就够了。

Reasons:0分。同样的理由,因为缺少重要的理由(前提)。

Overal: 2 分。有提升空间。

4 + 3 + 3 + 3 + 0 + 2 = 15

6. 

我的评分:4 + 4 + 3 + 2 + 4 + 2

评分存在问题,Opening 中,引用了 Division Theorem,给 4 分。State conclusion 给 4 分,"they can not all be prime"。

虽然存在很多 typos,但是逻辑是正确的。但对于我来说,这些 typo 让我花费更多去理解,所以 Clarity 给 2 分,Overall valuation 给 2 分。

7.

我给出的评分:4 + 4 + 4 + 0 + 4 + 2

在 "Assume it hold for n. Then" 之后,少了 "adding 2^(n+1) to both side of the assumed identity",所以会令人很困惑。由于这个

Clarity: 2 分

Reasons: 2 分

Overall valuation: 2 分

其他都是 4 分。至于我认为的没有陈述结论,其实逻辑上已经完整了。"The result(assumption) follows by induction"。所以总分相同,可能错的更离谱。

8. 

我给出了满分。

Instructor 认为:"Pick epsolon > 0" 会让初学者困惑,应该换成 "Let epsolon > 0 be given",因为这个 proof 是写给人看的,目标群体是初学者。

最后的结论少了 "by definition of limits"。

所以 Clarity, Opening, Reasons, Overall Valuation 都是 3 分。总分为 20。

9. 

我给出的评分:4 + 3 + 4 + 3 + 3 + 4

对于初学者来说,还需要证明趋近于 0 为什么交集是空集。所以 Clarity 是 3 分,Reasons 是 2 分,Overall valuation 是 3 分。

10.

和上一题一样。

Introduction to Mathematical Thinking - Week 9 评论答案2的更多相关文章

  1. Introduction to Mathematical Thinking - Week 9

    错题 评分出错 题目要求的是 "any" ,而答案只给出了一个.所以认为回答者没有理解题意,连 any 都没有理解.所以 0 分. 第一,标准的归纳法只能对自然数使用,而题目要求的 ...

  2. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  3. Introduction to Mathematical Thinking - Week 4

    否定的逻辑 应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号. 比如 对于任意的 x,x属于自然数,那么 x 是偶数或者奇数:这是对的 如果使用“乘法分配律”拆分,变成“对于任意的x ...

  4. Introduction to Mathematical Thinking - Week 3

    there exists and all there exists 证明根号2是无理数 all 习题 3. Which of the following formal propositions say ...

  5. Introduction to Mathematical Thinking - Week 2

    基本数学概念 real number(实数):是有理数和无理数的总称 有理数:可以表达为两个整数比的数(a/b, b!=0) 无理数是指除有理数以外的实数 imply -- 推导出 不需要 A 能推导 ...

  6. Introduction to Mathematical Thinking - Week 7

    Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Selec ...

  7. 机器学习经典书籍&论文

    原文地址:http://blog.sina.com.cn/s/blog_7e5f32ff0102vlgj.html 入门书单 1.<数学之美>PDF6 作者吴军大家都很熟悉.以极为通俗的语 ...

  8. nodejs是单线程

    你不妨先思考一个问题:在单核时代,PHP之类多线程或者多进程的,是怎么处理并发的?是排队吗? 答案是:的确就是排队.但是并不是一定要处理完请求1才能去处理请求2:实际上请求的处理过程中,有很多的时间是 ...

  9. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

随机推荐

  1. 长sql 语句拼接

    长sql 语句拼接

  2. Python爬取豆瓣《复仇者联盟3》评论并生成乖萌的格鲁特

    代码地址如下:http://www.demodashi.com/demo/13257.html 1. 需求说明 本项目基于Python爬虫,爬取豆瓣电影上关于复仇者联盟3的所有影评,并保存至本地文件. ...

  3. C语言-一个fopen函数中未使用二进制模式(b)引发的血案

    转自:http://blog.csdn.net/hinyunsin/article/details/6401854 最近写了一个网络文件传输模块,为了让这个模块具有更好的移植性,我尽量使用C标准IO ...

  4. net.reflector8.5.0.179过了试用期,要求输入序列号怎么办 注册机 破解

    去网上搜索“reflector keygen注册机下载”,随便找一个版本下载(如果你之前下载的软件自带有“Keygen.exe”注册机的话,直接用自带的注册机就可以了)1.断开网络2.下载安装原程序, ...

  5. FileNotFoundException: http:\localhos46087125.jpg (文件名、目录名或卷标语法不正确

    java.io.FileNotFoundException: http:\localhost:8080\ipms\upload\1332146087125.jpg (文件名.目录名或卷标语法不正确.) ...

  6. 基于Verilog的以2为底取对数函数log2(x)

    参考资料:xilinx AXI4 Stream Peripherals 源码 //*********************************************************** ...

  7. osd char

    osdchar.c #include<stdio.h> #include "TimeNewRoman.h" #define TNR 0x00 //Time New Ro ...

  8. java 使用Date类、Calendar类,实现增加日期

    Date date= new Date(); System.out.println("Date date= new Date()中的date: "+date); 输出对象date: ...

  9. Java并发编程(六)发布与逸出

    "发布(Publish)"一个对象的意思指,使对象能够在作用域之外的代码中使用. 例如: 将一个指向该对象的引用保存到其他代码可以访问的地方 在一个非私有的方法中返回该引用 将引用 ...

  10. PhpMyAdmin 配置文件现在需要一个短语密码的解决方法

    新版本的PhpMyAdmin 增强了安全性,需要在配置文件设置一个短语密码.否则进入之后会有“配置文件现在需要一个短语密码.”的红色警叹提示. 解决方法: 1.将 phpMyAdmin/librari ...