1.利用Logistic regression 进行分类的主要思想

根据现有数据对分类边界线建立回归公式,即寻找最佳拟合参数集,然后进行分类。

2.利用梯度下降找出最佳拟合参数

3.代码实现

 # -*- coding: utf-8 -*-
"""
Created on Tue Mar 28 21:35:25 2017 @author: MyHome
"""
import numpy as np
from random import uniform
'''定义sigmoid函数'''
def sigmoid(inX):
return 1.0 /(1.0 +np.exp(-inX)) '''使用随机梯度下降更新权重,并返回最终值'''
def StocGradientDescent(dataMatrix,classLabels,numIter = 600):
m,n = dataMatrix.shape
#print m,n
weights = np.ones(n)
for j in xrange(numIter):
dataIndex = range(m) for i in xrange(m): alpha = 4 / (1.0+j+i) + 0.01
randIndex = int(uniform(0,len(dataIndex)))
h = sigmoid(sum(dataMatrix[randIndex]*weights))
gradient = (h - classLabels[randIndex])*dataMatrix[randIndex]
weights = weights - alpha*gradient
del(dataIndex[randIndex]) return weights '''创建分类器'''
def classifyVector(inX,weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5:
return 1.0
else:
return 0.0 '''测试'''
def Test(): frTrain = open("horseColicTraining.txt")
frTest = open("horseColicTest.txt")
trainingSet = []
trainingLabel = []
for line in frTrain.readlines():
currLine = line.strip().split("\t")
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabel.append(float(currLine[21]))
trainWeights = StocGradientDescent(np.array(trainingSet),trainingLabel)
errorCount = 0.0
numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split("\t")
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(np.array(lineArr),trainWeights)) != int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print "the error rate of this test is:%f"%errorRate
return errorRate '''调用Test()10次求平均值'''
def multiTest():
numTest = 10
errorSum = 0.0
for k in range(numTest):
errorSum += Test()
print "after %d iterations the average errror rate is:\
%f"%(numTest,errorSum/float(numTest)) if __name__ == "__main__":
multiTest()

结果:

the error rate of this test is:0.522388
the error rate of this test is:0.328358

the error rate of this test is:0.313433

the error rate of this test is:0.358209

the error rate of this test is:0.298507

the error rate of this test is:0.343284

the error rate of this test is:0.283582

the error rate of this test is:0.313433

the error rate of this test is:0.343284

the error rate of this test is:0.358209

after 10 iterations the average errror rate is:        0.346269

4.总结

Logistic regression is finding best-fit parameters to a nonlinear function called the sigmoid.

Methods of optimization can be used to find the best-fit parameters. Among the

optimization algorithms, one of the most common algorithms is gradient descent. Gradient

desent can be simplified with stochastic gradient descent.

Stochastic gradient descent can do as well as gradient descent using far fewer computing

resources. In addition, stochastic gradient descent is an online algorithm; it can

update what it has learned as new data comes in rather than reloading all of the data

as in batch processing.

One major problem in machine learning is how to deal with missing values in the

data. There’s no blanket answer to this question. It really depends on what you’re

doing with the data. There are a number of solutions, and each solution has its own

advantages and disadvantages.

Logistic Regression 用于预测马是否生病的更多相关文章

  1. Logistic回归应用-预测马的死亡率

    Logistic回归应用-预测马的死亡率 本文所有代码均来自<机器学习实战>,数据也是 本例中的数据有以下几个特征: 部分指标比较主观.难以很好的定量测量,例如马的疼痛级别 数据集中有30 ...

  2. matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m

    不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...

  3. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  6. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  7. Logistic Regression Vs Decision Trees Vs SVM: Part I

    Classification is one of the major problems that we solve while working on standard business problem ...

  8. Logistic Regression逻辑回归

    参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f010 ...

  9. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

随机推荐

  1. LeetCode Degree of an Array

    原题链接在这里:https://leetcode.com/problems/degree-of-an-array/description/ 题目: Given a non-empty array of ...

  2. 【spring源码学习】spring的事件发布监听机制源码解析

    [一]相关源代码类 (1)spring的事件发布监听机制的核心管理类:org.springframework.context.event.SimpleApplicationEventMulticast ...

  3. IIS安装步骤(WIN10)

    打开控制面板 点开程序   点击“启动或关闭Windows功能,进入到启用或关闭windows功能之后我们选中“Internet Infomation Services”并勾选   点击确定     ...

  4. HttpClient超时设置

    场景:最近并发较高,看到响应时间6s的时候,心里咯噔一下,我记得我设置的超时时间是5s啊.   原来读取超时时间没生效,只生效了连接超时时间. ConnectionPoolTimeoutExcepti ...

  5. STM32GPIO管脚设置

    (1)GPIO_Mode_AIN 模拟输入 (2)GPIO_Mode_IN_FLOATING 浮空输入(3)GPIO_Mode_IPD 下拉输入 (4)GPIO_Mode_IPU 上拉输入 (5)GP ...

  6. 程序4-4 chmod函数实例

    //http://blog.chinaunix.net/uid-24549279-id-71355.html /* ========================================== ...

  7. eclipse配置storm1.1.0开发环境并本地跑起来

    storm的开发环境搭建比hadoop(参见前文http://www.cnblogs.com/wuxun1997/p/6849878.html)简单,无需安装插件,只需新建一个java项目并配置好li ...

  8. java中的getProperty()方法。获取系统中属性名为key的属性对应的值

    总结:getProperty方法:获取系统中属性名为key的属性对应的值,系统中常见的属性名以及属性如下: 现在用getProperty()的方法,获取系统信息代码: package com.aaa; ...

  9. 接口规范,js处理json,php返回给ajax的数据格式

    ajax异步获取php数据. 一般php会在后台处理请求,并返回结果给前端. 必须是echo的方式,不然ajax获取不到. 返回的类型包括,字符串,数字,json. 最常用的就是json. 返回后,前 ...

  10. php无刷新上传图片

    1. 引入文件 <!--图片上传begin--> <script type="text/javascript" src="/js/jquery.form ...