阅读

Time Limit: 10 Sec  Memory Limit: 256 MB

Description

  

Input

  

Output

  

Sample Input

  0 10 4 10 2
  3 10
  8 5

Sample Output

  -20

HINT

  

Main idea

  从K走向M,路上有n个收益点,表示到了pos位置可以增加val的收益,每次最多可以走D步,走一次损耗A。求最大收益。

Solution

  这题必然是一道DP,我们层层深入来思考。

  先从20%考虑:首先我们一下子就想到了暴力DP,令f[i]表示到了第i个收益点的最大收益,显然对于每个收益点我们可以O(n)往前枚举每种情况,两个收益点间到达的方法必然是每次都跳D步,最后补上一段,那么步数就是,这样做就是O(n^2)的算法。

  再考虑另外30%:我们发现,我们可以将pos%D同余的放在一个集合,因为这样的话两点之间到达必然是一直跳D步的,那么显然在同一个集合里的点最后一个点对后面的点贡献更优。由于这时候D<=100,我们先预处理,然后新增点的时候枚举D更新即可。

  考虑100%的做法:我们将前面两种方法结合起来,我们发现,由于中间这个步数是一个上取整的东西,不好维护,于是我们可以把它拆成,这个东西具体是+0还是+1我们可以举例子来思考。发现根据余数有关:当pos[j]%D<pos[i]%D的时候+1,否则+0。然后我们就可以用一个线段树来优化这个DP。对于叶子节点 i 维护 pos%D=i 的最值,这里的最值指的是上述式子中仅仅与 j 有关的一项,因为后面的val[i]以及其它项是都要加的,所以可以不管。然后我们再往线段树里面每次加入f[i],这样显然就是区间查询最值、单点修改的一个线段树结构。效率O(nlogn)

  这里还有一个技巧就是:所以我们维护线段树权值的时候可以不用管pos,最后对于答案加减操作即可。

  这样我们就解决了这道题\(≧▽≦)/。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std; typedef long long s64;
const int ONE=;
const s64 INF=1e18; int K,M,D,A,n;
s64 F,res;
int pos[ONE],val[ONE];
int Mod;
int li[ONE],Num; struct power
{
s64 maxx;
}Node[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Build(int i,int l,int r)
{
Node[i].maxx = -INF;
if(l==r) return;
int mid=(l+r)>>;
Build(i<<,l,mid); Build(i<<|,mid+,r);
} void Update(int i,int l,int r,int L,s64 x)
{
if(l==r)
{
Node[i].maxx = max(Node[i].maxx,x);
return;
}
int mid=(l+r)>>;
if(L<=mid) Update(i<<,l,mid,L,x);
else Update(i<<|,mid+,r,L,x);
Node[i].maxx = max(Node[i<<].maxx , Node[i<<|].maxx);
} void Query(int i,int l,int r,int L,int R)
{
if(L > R) return;
if(L<=l && r<=R)
{
res=max(res,Node[i].maxx);
return;
}
int mid=(l+r)>>;
if(L<=mid) Query(i<<,l,mid,L,R);
if(mid+<=R) Query(i<<|,mid+,r,L,R);
} int main()
{
K=get(); M=get(); D=get(); A=get(); n=get();
for(int i=;i<=n;i++)
pos[i]=get(), val[i]=get();
pos[]=K; pos[++n]=M; for(int i=;i<=n;i++) li[++Num]=pos[i] % D;
sort(li+,li+Num+); Num=unique(li+,li+Num+) - li -; Build(,,Num);
Mod = lower_bound(li+,li+Num+, K%D) - li;
Update(,,Num,Mod,);
for(int i=;i<=n;i++)
{
F = -INF;
Mod = lower_bound(li+,li+Num+, pos[i]%D) - li; res=-INF; Query(,,Num,,Mod-); F=max(F, res - A + val[i] );
res=-INF; Query(,,Num,Mod,Num); F=max(F, res + val[i]); Update(,,Num, Mod,F);
} printf("%I64d",F + (s64)A*(K/D) - (s64)A*(M/D));
}

【Foreign】阅读 [线段树][DP]的更多相关文章

  1. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  2. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  3. 【Foreign】划分序列 [线段树][DP]

    划分序列 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 9 4 ...

  4. lightoj1085 线段树+dp

    //Accepted 7552 KB 844 ms //dp[i]=sum(dp[j])+1 j<i && a[j]<a[i] //可以用线段树求所用小于a[i]的dp[j ...

  5. [CF 474E] Pillars (线段树+dp)

    题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...

  6. HDU-3872 Dragon Ball 线段树+DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3872 题意:有n个龙珠按顺序放在一列,每个龙珠有一个type和一个权值,要求你把这n个龙珠分成k个段, ...

  7. HDU4521+线段树+dp

    题意:在一个序列中找出最长的某个序列.找出的序列满足题中的条件. 关键:对于 第 i 个位置上的数,要知道与之相隔至少d的位置上的数的大小.可以利用线段树进行统计,查询.更新的时候利用dp的思想. / ...

  8. Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP

    题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...

  9. Special Subsequence(离散化线段树+dp)

    Special Subsequence Time Limit: 5 Seconds      Memory Limit: 32768 KB There a sequence S with n inte ...

随机推荐

  1. 通过修改Host文件解决主机头访问网站的问题

             网站打包发布后,一般都是通过IP地址来进行访问,但是这样不方便记忆.如何设置一个简单的域名,然后通过域名来进行访问呢?一个可行的方法就是修改本机的host文件,添加一条映射关系,把这 ...

  2. 26、js阶段性复习

    1.一元运算符 Operator + 可用于将变量转换为数字: <!DOCTYPE html> <html> <body> <p> typeof 操作符 ...

  3. mcrouter facebook 开源的企业级memcached代理

    原文地址:https://code.facebook.com/posts/296442737213493/introducing-mcrouter-a-memcached-protocol-route ...

  4. oracle 数据库字段名与实体类字段名称不匹配的处理方法

    之前公司一直都使用sql server 即使数据库字段名称与实体类名称不相同 可以使用诸如: select id as userId from tb_user 这种写法,可换到了oracle 之后坑爹 ...

  5. 基于规则的中文分词 - NLP中文篇

    之前在其他博客文章有提到如何对英文进行分词,也说后续会增加解释我们中文是如何分词的,我们都知道英文或者其他国家或者地区一些语言文字是词与词之间有空格(分隔符),这样子分词处理起来其实是要相对容易很多, ...

  6. LTE/EPC中,MME怎么找到UE的HSS的?

    http://bbs.c114.net/forum.php?mod=viewthread&tid=486247 HSS---归属用户服务器,我的理解:一般来说只有一个,或者是一个分布式数据库. ...

  7. IntelliJ IDEA 创建maven项目

    说明 创建Maven项目的方式:手工创建 好处:参考IntelliJ IDEA 14 创建maven项目二(此文章描述了用此方式创建Maven项目的好处)及idea14使用maven创建web工程(此 ...

  8. [Elasticsearch] 多字段搜索 (六) - 自定义_all字段,跨域查询及精确值字段

    自定义_all字段 在元数据:_all字段中,我们解释了特殊的_all字段会将其它所有字段中的值作为一个大字符串进行索引.尽管将所有字段的值作为一个字段进行索引并不是非常灵活.如果有一个自定义的_al ...

  9. js阻止冒泡事件和默认事件的方法

    阻止默认事件 function stopDeFault(e){ if(e&&e.preventDefault){//非IE e.preventDefault(); }else{//IE ...

  10. Struts1表单校验

    ActionForm中对表单元素进行校验 @Override public ActionErrors validate(ActionMapping mapping, HttpServletReques ...