B. Wycieczki

题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入格式

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。

输出格式

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

样例

样例输入

6 6 11
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3

样例输出

4

数据范围与提示

长度为1的路径有1->2,5->3,4->5。
长度为2的路径有2->3,3->4,4->5->3。
长度为3的路径有4->6,1->2->3,3->4->5,5->3->4。
长度为4的路径有5->3->4->5。

这道题时间跨度比较长了,主要是因为这道题贼难调,稍有不慎就会WA,而且这道题的测试点贼多,多到会出现2分情况,所以真的是我的签名说的,一杯茶一包纸,一份代码调成X

其实这道题还算好像,而且有思维量,主要就是要把边的矩阵拆点,然后建边,注意需点,也就是整个矩阵会扩大三倍;整个题其实就是二分(我打了一半,跑的实在是太慢了,所以换了一种方法)倍增,倍增就和求lca其实是一样的,就是换成了矩阵,不知其他神犇是怎么打的,反正我是使用结构体,但是要注意细节,整个卡了一晚上,就是因为矩阵传参没加取地址,加上就A了,有神犇知道为啥的就留言吧

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
#define LL long long
#define re register
#define F(i,a,b) for(LL i=a;i<=b;i++)
LL n,m,u,v,d,t;
long long s,k;
bool flag;
inline LL read()
{
re LL ss=;char bb=getchar();
while(bb<||bb>)bb=getchar();
while(bb>=&&bb<=)ss=(ss<<)+(ss<<)+(bb^),bb=getchar();
return ss;
}
struct Martix
{
LL x[][];
void init()
{
memset(x,,sizeof(x));
}
}mul[],tmp;
Martix bg,base,now;
void made(Martix &a,Martix &b,Martix &c)
{
flag=;
tmp.init();
F(i,,*n+)
F(l,,*n+)
{
if(!a.x[i][l])continue;
//debug(i);debug(l);
F(j,,*n+)
tmp.x[i][j]=tmp.x[i][j]+a.x[i][l]*b.x[l][j];
if(i==&&tmp.x[i][*n+]>=k)flag=;
}
c=tmp;
}
int main()
{
//freopen("cnm.txt","r",stdin);
n=read(),m=read(),k=read();
F(i,,n)
{
bg.x[][i]=;
base.x[i][i+n]=;
base.x[i+n][i+*n]=;
}
while(m--)
{
u=read(),v=read(),d=read();
base.x[u+(d-)*n][v]++;
base.x[u+(d-)*n][*n+]++;
}
base.x[*n+][*n+]=;
mul[]=base;
for(;t<=;t++)
{
if(t)
made(mul[t-],mul[t-],mul[t]);
made(bg,mul[t],now);
if(!flag||now.x[][*n+]>=k){break;}
}
t--;
if(t==&&now.x[][*n+]<k)
{
puts("-1");
return ;
}
for(LL i=t;i>=;i--)
{
made(bg,mul[i],now);
if(flag&&now.x[][*n+]<k)
{
s+=(1ll<<i);
bg=now;
}
}
printf("%lld\n",s+);
}

hhh

endl;

Wycieczki 线性代数的更多相关文章

  1. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  2. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  3. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  4. 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍

    调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...

  5. 【BZOJ】【TJOI2015】线性代数

    网络流/最小割/最大权闭合图 2333好开心,除了一开始把$500^2$算成25000……导致数组没开够RE了一发,可以算是一次AC~ 咳咳还是回归正题来说题解吧: 一拿到这道题,我就想:这是什么鬼玩 ...

  6. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  7. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  8. 线性代数-矩阵-【1】矩阵汇总 C和C++的实现

    矩阵的知识点之多足以写成一本线性代数. 在C++中,我们把矩阵封装成类.. 程序清单: Matrix.h//未完待续 #ifndef _MATRIX_H #define _MATRIX_H #incl ...

  9. 线性代数-矩阵-【2】矩阵生成 C和C++实现

    矩阵的知识点之多足以写成一本线性代数. 所以我们把矩阵的运算封装成矩阵类.以C++为主进行详解. 点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Lia ...

随机推荐

  1. Flex 布局——语法属性详解

    前言 Flexbox 是 flexible box 的简称(注:意思是“灵活的盒子容器”),是 CSS3 引入的新的布局模式.它决定了元素如何在页面上排列,使它们能在不同的屏幕尺寸和设备下可预测地展现 ...

  2. python编程基础之二十六

    偏函数:当一个函数有大量的参数时候,调用时候非常不方便,于是就可以用偏函数解决,将一些参数固定(默认值),达到简化函数调用的目的 使用偏函数需要导入functools import functools ...

  3. SQL SERVER 字符串类型varchar格式转换成int类型进行排序

    日常数据分析过程中,经常会遇到排序的情况,有时会根据空字段表进行临时排序,转换数据类型 使用  ORDER BY CAST (<字段名> AS INT)  ASC 举例: SELECT I ...

  4. web前端Vue+Django rest framework 框架 生鲜电商项目实战视频教程 ☝☝☝

    web前端Vue+Django rest framework 框架 生鲜电商项目实战视频教程    web前端Vue+Django rest framework 框架 生鲜电商项目实战视频教程 学习 ...

  5. socat的介绍与使用

    Socat 是 Linux 下的一个多功能的网络工具,名字来由是 「Socket CAT」.其功能与有瑞士军刀之称的 Netcat 类似,可以看做是 Netcat 的加强版. Socat 的主要特点就 ...

  6. 02 Node.js学习笔记之http服务

    在Node中可以非常轻松的构建一个Web服务器,在Node中提供了一个http模块,这个模块主要功能就是帮助你创建一个Web服务器. 创建步骤: //1.加载http模块 var http=requi ...

  7. ESP8266开发之旅 应用篇② OLED显示天气屏

    1.前言     这一篇,博主将教大家怎么去实现一个简易版本的天气助手.     先来一个博主已经实现功能的图片,如下: 1.1 知识储备     本篇需要用到以下知识点: 运用到ArduinoJso ...

  8. LIGHTX-CMS —— 基于 Node.js,Express.js 以及 SQLite 3 搭建的个人博客系统

    概述 LIGHTX-CMS 是我基于 Node.js,Express.js 以及 SQLite 3 搭建的个人博客发布系统. 项目本身可以拿来部署个人博客网站,同时我认为其也适合用以新手学习 Node ...

  9. SoapUI 关联之Property Transfer、JSONPath、Xpath

    进行接口功能测试过程中,经常会碰到,需要获取到上一个请求响应结果中数据,传递到下一个请求中来使用.在soapui中我们通过Property Transfer来实现. 1.Property Transf ...

  10. mysql库表优化实例

    一.SQL优化 1.优化SQL一般步骤 1.1 查看SQL执行频率 SHOW STATUS LIKE 'Com_%'; Com_select:执行SELECT操作的次数,一次查询累加1.其他类似 以下 ...