sklearn中的指标都在sklearn.metric包下,与聚类相关的指标都在sklearn.metric.cluster包下,聚类相关的指标分为两类:有监督指标和无监督指标,这两类指标分别在sklearn.metric.cluster.supervised和sklearn.metric.cluster.unsupervised包下。聚类指标大部分都是有监督指标,无监督指标较少。

无监督指标和有监督指标应该充分配合起来:无监督指标很好,有监督指标很差,表明这个问题可能不是单靠聚类就能解决的;无监督指标很差,有监督指标很好,表明有监督指标很可能是不靠谱的,数据标注有问题。

sklearn.metric.cluster.__init__.py把所有的聚类指标都引入进来了。

实际上,sklearn.metric包把cluster下的指标全部引进来了,所以可以直接使用sklearn.metric而不必关心sklearn.metric.cluster.

from .supervised import adjusted_mutual_info_score
from .supervised import normalized_mutual_info_score
from .supervised import adjusted_rand_score
from .supervised import completeness_score
from .supervised import contingency_matrix
from .supervised import expected_mutual_information
from .supervised import homogeneity_completeness_v_measure
from .supervised import homogeneity_score
from .supervised import mutual_info_score
from .supervised import v_measure_score
from .supervised import fowlkes_mallows_score
from .supervised import entropy
from .unsupervised import silhouette_samples
from .unsupervised import silhouette_score
from .unsupervised import calinski_harabaz_score
from .bicluster import consensus_score

预备知识

在了解这些聚类指标前,需要一些预备知识才能读懂代码。

COO

稀疏矩阵的一种格式,保存行、列、数三项。

contingency_matrix共现矩阵

from sklearn import metrics
from sklearn.metrics.cluster.supervised import contingency_matrix labels_true = np.array([0, 2, 2, 3, 2, 1])
labels_pred = np.array([0, 2, 2, 2, 1, 2])
contingency = contingency_matrix(labels_true, labels_pred, sparse=True)

输出为

[[1 0 0]

[0 0 1]

[0 1 2]

[0 0 1]]

共现矩阵行数等于实际类别数,列数等于聚类个数,第i行第j列的值表示实际类别为i的元素有多少个被当做聚类类别为j。

AdjustedRandIndex调整兰德系数

调整之意是:$score=\frac{x-E(x)}{max(x)-E(x)}$

兰德系数是一种指标,互信息是一种指标,经过调整得到调整兰德系数和调整互信息两种指标。

调整的意义在于:对于随机聚类,分值应该尽量低。

import numpy as np
from scipy.misc import comb
from sklearn import metrics
from sklearn.metrics.cluster.supervised import contingency_matrix labels_true = np.array([0, 2, 2, 3, 2, 1])
labels_pred = np.array([0, 2, 2, 2, 1, 2])
score = metrics.cluster.adjusted_rand_score(labels_true, labels_pred)
print(score)
n_samples = labels_true.shape[0]
n_classes = np.unique(labels_true).shape[0]
n_clusters = np.unique(labels_pred).shape[0]
contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
print(contingency.todense())
sum_comb_c = sum(comb(n_c, 2) for n_c in np.ravel(contingency.sum(axis=1)))
sum_comb_k = sum(comb(n_k, 2) for n_k in np.ravel(contingency.sum(axis=0)))
sum_comb = sum(comb(n_ij, 2) for n_ij in contingency.data)
prod_comb = (sum_comb_c * sum_comb_k) / comb(n_samples, 2)
mean_comb = (sum_comb_k + sum_comb_c) / 2.
score = (sum_comb - prod_comb) / (mean_comb - prod_comb)
print(score)

silhouette_score

silhouette_score是一种无监督聚类指标。

$$silhouette_sample_score=\frac{b-a}{max(a,b)}$$

a表示样本的最小类内距离,b表示样本的最小类间距离。

silhouette_samples函数用于计算每个样本的silhouette分值,silhouette_score就是各个样本分值的平均值。

参考资料

https://blog.csdn.net/howhigh/article/details/73928635

sklearn官方文档

sklearn聚类评价指标的更多相关文章

  1. sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM

    1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...

  2. 学习sklearn聚类使用

    学习利用sklearn的几个聚类方法: 一.几种聚类方法 1.高斯混合聚类(mixture of gaussians) 2.k均值聚类(kmeans) 3.密度聚类,均值漂移(mean shift) ...

  3. 机器学习之sklearn——聚类

    生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...

  4. Python数模笔记-Sklearn(2)样本聚类分析

    1.分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模.机器学习领域常常被混淆. 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised ...

  5. 聚类结果的评估指标及其JAVA实现

    一. 前言 又GET了一项技能.在做聚类算法的时候,由于要评估所提出的聚类算法的好坏,于是需要与一些已知的算法对比,或者用一些人工标注的标签来比较,于是用到了聚类结果的评估指标.我了解了以下几项. 首 ...

  6. Alink漫谈(二十二) :源码分析之聚类评估

    Alink漫谈(二十二) :源码分析之聚类评估 目录 Alink漫谈(二十二) :源码分析之聚类评估 0x00 摘要 0x01 背景概念 1.1 什么是聚类 1.2 聚类分析的方法 1.3 聚类评估 ...

  7. waiting list

    Problem: how to cluster non-stationary multivariate time series. What are stationary time series How ...

  8. sklearn:聚类clustering

    http://blog.csdn.net/pipisorry/article/details/53185758 不同聚类效果比较 sklearn不同聚类示例比较 A comparison of the ...

  9. 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...

随机推荐

  1. Quantization aware training 量化背后的技术——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

    1,概述 模型量化属于模型压缩的范畴,模型压缩的目的旨在降低模型的内存大小,加速模型的推断速度(除了压缩之外,一些模型推断框架也可以通过内存,io,计算等优化来加速推断). 常见的模型压缩算法有:量化 ...

  2. linux open 黄色文件

    表示设备文件 生成的新的pdf

  3. 201871010105-曹玉中《面向对象程序设计(java)》第十六周学习总结

    201871010105-曹玉中<面向对象程序设计(java)>第十六周学习总结 项目 内容 这个作业属于哪个过程 https://www.cnblogs.com/nwnu-daizh/ ...

  4. day30_8.9 操作系统与并发编程

    一.操作系统相关 1.手工操作 1946年第一台计算机诞生--20世纪50年代中期,计算机工作还在采用手工操作方式.此时还没有操作系统的概念. 这时候的计算机是由人为将穿孔的纸带装入输入机,控制台获取 ...

  5. day20_7.24 面向对象1

    一.面向对象概念 面向对象是一种编程思想,是实现代码高内聚低耦合的关键概念,核心是对象,程序就是由多个对象组成,程序员调度这些对象进行工作. 而与之相对的是面向过程的编程. 优点:逻辑清晰 , 复杂问 ...

  6. CentOS 8 正式发布!

    CentOS 8 正式发布! CentOS 8 和 RedHat Enterprise Linux 8 发行的版本是一致的,都是基于 Fedora 28 和 内核 4.18.支持传统的.新兴的工作负载 ...

  7. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  8. 【Spring AOP】通知(五)

    一.通知介绍 1. 前置通知(Before) 在目标方法执行之前执行的通知. 前置通知方法,可以没有参数,也可以额外接收一个JoinPoint,Spring会自动将该对象传入,代表当前的连接点,通过该 ...

  9. nginx配置代理时参数说明

  10. 10.24考试题解qwq

    考点难度都很合适的一套题目,大概在day1到day2之前 T1 猴猴最喜欢在树上玩耍,一天猴猴又跳上了一棵树,这棵树有N个苹果,每个苹果有一个编号,分别为0~N-1,它们之间由N-1个树枝相连,猴猴可 ...