题目传送门:LOJ #3160

简要题意:

有一个长度为 \(n\) 的序列 \(a\),初始时 \(a_i=i\) 或 \(a_i=i^2\),这取决于 \(\mathrm{type}\) 的值。

对这个序列进行 \(m\) 次操作,每次操作给定一个值 \(A_i\),把这个序列分为两部分:\(a[1:A_i]\) 和 \(a[A_i+1:n]\),然后在不改变两个序列内部相对顺序的限制下,均匀地将这两个序列混合,形成新的序列,则新的序列 \(a\) 即为这个混合而成的新序列。

\(Q\) 次询问经过了这 \(m\) 次操作后,某个位置上的值 \(a_{c_i}\) 的期望。

题解:

因为是均匀的混合,所以在所有 \(\displaystyle\binom{n}{A_i}\) 种混合方式中,所有方式出现的概率均是相等的。

首先打一个 \(30\) 分的 \(\mathcal{O}(m\cdot n^2)\) 的暴力,或观察样例可以发现:做任意多次操作后,序列 \(\mathbb{E}[a_i]\) 仍然是一次函数或二次函数。

这个结论可以这样感性理解:

  • 首先,初始时是一次函数或者二次函数,只需证明一个一次函数或二次函数经过一次操作后次数仍然不变即可。
  • 考虑 \(\mathbb{E}[a_i]=f(i)\),其中 \(f(x)\) 是关于 \(x\) 的一个一次函数或二次函数。
  • 经过一次给定的值为 \(k\) 的操作后,左边的第 \(i\) 项等于 \(f(i)\),右边的第 \(i\) 项等于 \(f(k+i)\),左右两边也是次数相同的函数。
  • 两个一次函数或二次函数形成的序列均匀混合后对应的函数,次数是不应当增加的,而因为最高次项系数符号相同,最高次项也不会被抵消,所以次数也不会减少。

那么每次只需求出前三项的值即可,前三项只有可能由左边序列的前三项(这已经求出)和右边序列的前三项(需要插值求出)组合而成,只要推一些简单的式子就可以求出新的前三项的值了。

以下是代码,复杂度 \(\mathcal{O}(m)\):

#include <cstdio>

typedef long long LL;
const int Mod = 998244353;
const int Inv2 = (Mod + 1) / 2; inline int qPow(int b, int e) {
int a = 1;
for (; e; e >>= 1, b = (LL)b * b % Mod)
if (e & 1) a = (LL)a * b % Mod;
return a;
}
inline int gInv(int x) { return qPow(x, Mod - 2); } int N, M, A, Q, Typ;
LL iN0, iN1, iN2;
int E1, E2, E3;
inline int GetX(int i) {
if (i == 1) return E1;
if (i == 2) return E2;
if (i == 3) return E3;
int SE1 = (LL)E1 * (i - 2) % Mod * (i - 3) % Mod;
int SE2 = (LL)E2 * (2 - i - i + Mod) % Mod * (i - 3) % Mod;
int SE3 = (LL)E3 * (i - 1) % Mod * (i - 2) % Mod;
return ((LL)SE1 + SE2 + SE3) * Inv2 % Mod;
} int main() {
freopen("landlords.in", "r", stdin);
freopen("landlords.out", "w", stdout);
scanf("%d%d%d", &N, &M, &Typ), --Typ;
iN0 = gInv(N), iN1 = gInv((LL)N * (N - 1) % Mod), iN2 = gInv((LL)N * (N - 1) % Mod * (N - 2) % Mod);
E1 = 1, E2 = Typ ? 4 : 2, E3 = Typ ? 9 : 3;
while (M--) {
scanf("%d", &A);
LL F1 = E1, F2 = E2, F3 = E3;
LL F4 = GetX(A + 1), F5 = GetX(A + 2), F6 = GetX(A + 3);
E1 = (F1 * A + F4 * (N - A)) % Mod * iN0 % Mod;
E2 = (F2 * A % Mod * (A - 1) + (F1 + F4) * A % Mod * (N - A) + F5 * (N - A) % Mod * (N - A - 1)) % Mod * iN1 % Mod;
E3 = (F3 * A % Mod * (A - 1) % Mod * (A - 2) + (F4 + F2 + F2) * A % Mod * (A - 1) % Mod * (N - A) + (F5 + F5 + F1) * A % Mod * (N - A) % Mod * (N - A - 1) % Mod + F6 * (N - A) % Mod * (N - A - 1) % Mod * (N - A - 2)) % Mod * iN2 % Mod;
}
scanf("%d", &Q);
for (int X; Q--; ) {
scanf("%d", &X);
printf("%d\n", GetX(X));
}
return 0;
}

LOJ 3160: 「NOI2019」斗主地的更多相关文章

  1. LOJ 3158: 「NOI2019」序列

    题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \( ...

  2. LOJ 3159: 「NOI2019」弹跳

    题目传送门:LOJ #3159. 题意简述: 二维平面上有 \(n\) 个整点,给定每个整点的坐标 \((x_i,y_i)\). 有 \(m\) 种边,第 \(i\) 种边从 \(p_i\) 号点连向 ...

  3. LOJ 3156: 「NOI2019」回家路线

    题目传送门:LOJ #3156. 题意简述: 有一张 \(n\) 个点 \(m\) 条边的有向图,边有两个权值 \(p_i\) 和 \(q_i\)(\(p_i<q_i\))表示若 \(p_i\) ...

  4. @loj - 3157@「NOI2019」机器人

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 R 喜欢研究机器人. 最近,小 R 新研制出了两种机器人,分 ...

  5. loj3161「NOI2019」I 君的探险(随机化,整体二分)

    loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起 ...

  6. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  7. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  8. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  9. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

随机推荐

  1. mysql增加字段,修改字段,增加索引等语句

    mysql语句: 1.修改表名: rename table 旧表名 to 新表名; 2.修改字段类型: alter table 表名 modify column 字段名 字段类型(长度) 3.修改字段 ...

  2. Econ 493 A1 - Fall 2019

    Econ 493 A1 - Fall 2019Homework 4Assignment InformationThis assignment is due on Monday November 18 ...

  3. Java8 新特性 Stream 无状态中间操作

    无状态中间操作 Java8 新特性 Stream 练习实例 中间无状态操作,可以在单个对单个的数据进行处理.比如:filter(过滤)一个元素的时候,也可以判断,比如map(映射)... 过滤 fil ...

  4. CountDownLatch 一个复杂的例子

    CountDownLatch复杂点的例子 public class CountDownLatchTest2 { private static Random random = new Random(Sy ...

  5. maven打包产生可执行jar包

    http://blog.csdn.net/u014695188/article/details/53128095 https://blog.csdn.net/fuck487/article/detai ...

  6. JSON文件加注释的7种方法

    JSON文件加注释的7种方法 缺省不能加注释,现实有需求 根据JSON规范(http://www.json.org, RFC 4627, RFC 7159),不支持注释.JSON规范之所以不允许加注释 ...

  7. c# 自定义验证登录(Authorize)

    我们的项目本来是用azure的auth认证,是用过程中发现登录速度太慢了,所以还是自己搞一个吧,没想到搞起来挺简单的,不是用一个专门的认证服务器哈,就是一个简单的工具类. 验证是否登录的类 /// & ...

  8. 【C#】Winform 令人困擾的畫面閃爍問題解法

    DoubleBuffered = true 如果 Control 沒有這個屬性,可以使用我下列擴充函式進行設定︰ public static void SetDoubleBuffered<T&g ...

  9. QQ互联,填写回调时注意事项

    今天在做QQ登录接口的时候,填写回调地址的时候,竟然出现了诡异的事情. 我的回调地址我直接填的域名,也申请通过了.但是在做开发地时候,一直提示这蛋疼的  redirect uri is illegal ...

  10. 线程状态---Day24

    线程状态概述: 当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态.在线程的生命周期中, 有几种状态呢?在API中 java.lang.Thread.State 这个枚举中 ...