Description

On January 1st 2002, The Netherlands, and several other European countries abandoned their national currency in favour of the Euro. This changed the ease of paying, and not just internationally. 
A student buying a 68 guilder book before January 1st could pay for the book with one 50 guilder banknote and two 10 guilder banknotes, receiving two guilders in change. In short:50+10+10-1-1=68. Other ways of paying were: 50+25-5-1-1, or 100-25-5-1-1.Either way, there are always 5 units (banknotes or coins) involved in the payment process, and it 
could not be done with less than 5 units. 
Buying a 68 Euro book is easier these days: 50+20-2 = 68, so only 3 units are involved.This is no coincidence; in many other cases paying with euros is more efficient than paying with guilders. On average the Euro is more efficient. This has nothing to do, of course, with the value of the Euro, but with the units chosen. The units for guilders used to be: 1, 2.5, 5, 10, 25, 50,whereas the units for the Euro are: 1, 2, 5, 10, 20, 50. 
For this problem we restrict ourselves to amounts up to 100 cents. The Euro has coins with values 1, 2, 5, 10, 20, 50 eurocents. In paying an arbitrary amount in the range [1, 100] eurocents, on average 2.96 coins are involved, either as payment or as change. The Euro series is not optimal in this sense. With coins 1, 24, 34, 39, 46, 50 an amount of 68 cents can be paid using two coins.The average number of coins involved in paying an amount in the range [1, 100] is 2.52. 
Calculations with the latter series are more complex, however. That is, mental calculations.These calculations could easily be programmed in any mobile phone, which nearly everybody carries around nowadays. Preparing for the future, a committee of the European Central Bank is studying the efficiency of series of coins, to find the most efficient series for amounts up to 100 eurocents. They need your help. 
Write a program that, given a series of coins, calculates the average and maximum number of coins needed to pay any amount up to and including 100 cents. You may assume that both parties involved have sufficient numbers of any coin at their disposal. 

Input

The first line of the input contains the number of test cases. Each test case is described by 6 different positive integers on a single line: the values of the coins, in ascending order. The first number is always 1. The last number is less than 100. 

Output

For each test case the output is a single line containing first the average and then the maximum number of coins involved in paying an amount in the range [1, 100]. These values are separated by a space. As in the example, the average should always contain two digits behind the decimal point. The maximum is always an integer. 

Sample Input

3
1 2 5 10 20 50
1 24 34 39 46 50
1 2 3 7 19 72

Sample Output

2.96 5
2.52 3
2.80 4

Q : 如何处理找零

A : dp[v] = min{dp[v-w[i]]+1, dp[v+w[i]]+1}. 针对此题(尚不了解方法是否有普适性), 可以先求一步不找零情况下的完全背包问题, 然后再进行一步完全背包, 比较哪种方案用的个数较少

思路:

1. 令 dp[v] 表示拼出总面额为 v 的钱所需要的最少硬币数

2. 求解一步完全背包, 这一步假设不允许找零, dp[v] = min(dp[v], dp[v-w[i]]+1)

3. 然后由状态转移方程, 求解找零的最优解, dp[v] = min(dp[v], dp[v+w[i]+1)

总结:

1. 完全背包问题, 当 dp[i] = f(dp[i+xxx]) 时, 第二层循环是从大到小遍历, 因为完全背包要求等式右边是同行的数据(假如使用二维矩阵存储dp[i][j]的话)

2. 找零问题会使总的钱数超过目标值, 比如为了得到 goal(100), 可能给对方150, 对方找回 50, 因此 dp 数组需要开大一点

3. 第二步完全背包, 状态转移方程 dp[v] = min(dp[v], dp[v-w[i]+1), 为了方便理解还是先转化为二维空间存储最优解

dp[i][v] = min(dp[i-1][v], dp[i][v-w[i]]+1)

dp[i-1][v] 表示前 i-1 个硬币可以当做零钱找回的情况下的最优解, 当考虑到第 i 个硬币时, 假如把其当做了零钱, 那么若满足 dp[i][v+w[i]]+1 > dp[i-1][v], 则说明先把钱累积到 v+w[i], 然后再找一次零钱 w[i] 要比直接累积到 v 使用的硬币数少(说法不严谨, 但大致是这个意思)

逆着分析, 是有些难以理解

代码:

#include <iostream>
using namespace std;
const int MAXN = 110;
const int MAXM = 100*20;
const int n = 6;
int money[MAXN];
int dp[MAXM+10];
/*
* 不允许找钱, 前 i 个 coin 相加恰好为 x money
* 最大的money 总额可能会超过 100
* 完全背包, 每件物品可以放任意多次, 第二层循环(j) 从小到大遍历
*/
void withoutChange() {
memset(dp, 0x3f, sizeof(dp));
dp[0] = 0; // "恰好"
for(int i = 0; i < n; i++) {
for(int j = money[i]; j <= MAXM; j ++) {
dp[j] = min(dp[j], dp[j-money[i]]+1);
}
}
}
/*
* 允许找钱
* 对 i, 枚举找回的钱
* 允许找钱, 同时意味着一方给的钱可能会超过 100, 题目已经说明, 每组数据都包含1, 所以, 数据若是比较苛刻的话, maxn 得设置为 99 * 50
* 状态转移方程的方向变了, 同时完全背包要求等式右边是新的数据, 因此, j 的遍历顺序为从大到小
* dp[v] = min(dp[v], dp[v+w[i]]) 对于第 i 个硬币, 要么作为零钱, 要么不作为, 反过来, 好难想
*/
void withChange() {
for(int i = 0; i < n; i ++) {
for(int j = MAXM-money[i]; j >= 1; j --) {
dp[j] = min(dp[j], dp[j+money[i]]+1);
}
}
} int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int testCase;
cin >> testCase;
while(testCase--) {
for(int i = 0; i < n; i ++) {
scanf("%d", &money[i]);
}
float avg_coin = 0.0;
int max_coin = 0;
// first step
withoutChange();
// second step
withChange();
for(int i = 1; i <= 100; i ++) {
avg_coin += dp[i];
max_coin = max(max_coin, dp[i]);
}
avg_coin = avg_coin/100;
printf("%0.2f %d\n", avg_coin, max_coin);
}
return 0;
}

  

POJ 1252 Euro Efficiency(完全背包, 找零问题, 二次DP)的更多相关文章

  1. POJ 1252 Euro Efficiency ( 完全背包变形 && 物品重量为负 )

    题意 : 给出 6 枚硬币的面值,然后要求求出对于 1~100 要用所给硬币凑出这 100 个面值且要求所用的硬币数都是最少的,问你最后使用硬币的平均个数以及对于单个面值所用硬币的最大数. 分析 :  ...

  2. POJ 3260 The Fewest Coins(多重背包问题, 找零问题, 二次DP)

    Q: 既是多重背包, 还是找零问题, 怎么处理? A: 题意理解有误, 店主支付的硬币没有限制, 不占额度, 所以此题不比 1252 难多少 Description Farmer John has g ...

  3. POJ 1252 Euro Efficiency(最短路 完全背包)

    题意: 给定6个硬币的币值, 问组成1~100这些数最少要几个硬币, 比如给定1 2 5 10 20 50, 组成40 可以是 20 + 20, 也可以是 50 -10, 最少硬币是2个. 分析: 这 ...

  4. POJ 1252 Euro Efficiency

    背包 要么 BFS 意大利是说给你几个基本的货币,组成 1~100 所有货币,使用基本上的货币量以最小的. 出口 用法概率.和最大使用量. 能够BFS 有可能 . 只是记得数组开大点. 可能会出现 1 ...

  5. Euro Efficiency(完全背包)

    Euro Efficiency Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) Tot ...

  6. [LeetCode] Coin Change 2 硬币找零之二

    You are given coins of different denominations and a total amount of money. Write a function to comp ...

  7. [LeetCode] 518. Coin Change 2 硬币找零之二

    You are given coins of different denominations and a total amount of money. Write a function to comp ...

  8. POJ Euro Efficiency 1252

    Euro Efficiency Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4109   Accepted: 1754 D ...

  9. HDU3591找零,背包

    题目大概的意思就是:小强用硬币买东西,硬币有N种,面值为Vi,店家有各种硬币都有无限个,而小强只有Ci个(分别对应Vi) 问最小交易硬币数,就是一个有找零的背包问题啦. 我的上一篇博客跟这hdu359 ...

随机推荐

  1. LINQ架构简单描述

    写在前面的话:课堂上老师只是简单提了一下LINQ,当时听着老师对它的描述,感觉非常神奇,不用去操作繁琐的SQL语句了,读取数据库的操作居然能向写C#代码一样方便,但是一直没有机会去学习使用它. LIN ...

  2. multi-mechanize error: can not find test script: v_user.py问题

    从github上下载,安装multi-mechanize,新建工程,运行工程报错. 环境: win7-x64, python 2.7 multi-mechanize can not find test ...

  3. Java调用存储过程小结

    学生在学习jdbc的时候,会问到怎么调用存储过程,现在将java调用oracle存储过程的示例总结如下.(关于调用sqlserver的存储过程将在下次进行小结请关注) 一:无返回值的存储过程 存储过程 ...

  4. activiti5.13工作流系列(一)-初识

    1.什么是工作流? 工作流就是让多个参与者之间按照某种预定义的规则传递文档.信息或任务的过程,工作流由实体(Entity).参与者(Participant).流程定义(Flow Definition) ...

  5. 百度分享vue版-vshare

    vshare 基于百度分享开发的支持VUE2.X的分享插件,为您带来更多的流量!提供多种风格按钮,代码加载更快,引入社会化流量,提升网页抓取速度等优点.github地址:https://github. ...

  6. iscsi线缆

  7. beeline执行hql过程中出现错误,权限不足

    使用beeline执行hql查询时,出现以下错误: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec ...

  8. ThinkPHP3.2 介绍

    模块化 驱动化 为云平台而生ThinkPHP3.2正式版发布! ThinkPHP是国内领先的WEB应用开发框架,诞生于2006年初,在国内具有良好的口碑和广大的用户群,秉承了大道至简的开发理念,让WE ...

  9. 机器学习之梯度提升决策树GBDT

    集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...

  10. MongoDB状态查询:db.serverStatus()

    参见:http://www.2cto.com/database/201501/370191.html 基本信息 spock:PRIMARY>db.serverStatus() { "h ...