BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)
题意
Sol
看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq
首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\)
为什么呢?首先最坏情况下是用\(n\)条路径去覆盖(就是\(n\)个点),根据二分图的性质,每个点只能有一个和他配对,这样就保证了,每多出一个匹配,路径数就会\(-1\)
扩展到有边权的图也是同理的,\(i\)表示二分图左侧的点,\(i'\)表示二分图右侧的点,对于两点\(u, v\),从\(u\)向\(v'\)连\((1, w_i)\)的边(前面是流量,后面是费用)
接下来从\(S\)向\(i\)连\((1, 0)\)的边,从\(i'\)向\(T\)连\((1, 0)\)的边,从\(S\)向\(i'\)连\((1, A_i)\)的边
跑最小费用最大流即可
#include<bits/stdc++.h>
#define chmin(x, y) (x = x < y ? x : y)
#define chmax(x, y) (x = x > y ? x : y)
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, S, T, dis[MAXN], vis[MAXN], Pre[MAXN], ansflow, anscost, A[MAXN];
struct Edge {
int u, v, f, w, nxt;
}E[MAXN];
int head[MAXN], num = 0;
inline void add_edge(int x, int y, int f, int w) {
E[num] = (Edge) {x, y, f, w, head[x]}; head[x] = num++;
}
inline void AddEdge(int x, int y, int f, int w) {
add_edge(x, y, f, w); add_edge(y, x, 0, -w);
}
bool SPFA() {
queue<int> q; q.push(S);
memset(dis, 0x3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
dis[S] = 0;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(int i = head[p]; ~i; i = E[i].nxt) {
int to = E[i].v;
if(E[i].f && dis[to] > dis[p] + E[i].w) {
dis[to] = dis[p] + E[i].w; Pre[to] = i;
if(!vis[to]) vis[to] = 1, q.push(to);
}
}
}
return dis[T] <= INF;
}
void F() {
int canflow = INF;
for(int i = T; i != S; i = E[Pre[i]].u) chmin(canflow, E[Pre[i]].f);
for(int i = T; i != S; i = E[Pre[i]].u) E[Pre[i]].f -= canflow, E[Pre[i] ^ 1].f += canflow;
anscost += canflow * dis[T];
}
void MCMF() {
while(SPFA()) F();
}
int main() {
memset(head, -1, sizeof(head));
N = read(); M = read(); S = N * 2 + 2, T = N * 2 + 3;
for(int i = 1; i <= N; i++) A[i] =read(), AddEdge(S, i, 1, 0), AddEdge(i + N, T, 1, 0), AddEdge(S, i + N, 1, A[i]);
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), v = read();
if(x > y) swap(x, y);
AddEdge(x, y + N, 1, v);
}
MCMF();
printf("%d\n", anscost);
return 0;
}
BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)的更多相关文章
- BZOJ1927 [Sdoi2010]星际竞速 【费用流】
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 2582 Solved: 1601 [Submit][St ...
- 【洛谷2469/BZOJ1927】[SDOI2010]星际竞速(费用流/最小路径覆盖)
题目: 洛谷2469 分析: 把题目翻译成人话:给一个带边权的DAG,求一个路径覆盖方案使路径边权总和最小.从点\(i\)开始的路径需要额外加上\(A_i\)的权值. 回xian忆chang一xue下 ...
- P2469 [SDOI2010]星际竞速(费用流)
P2469 [SDOI2010]星际竞速 最小路径覆盖问题 每个星球必须恰好去一次,而每次高速航行都是从一个星球到另一个星球. 那么高速航行的起点可以保证被去过 高速航行和空间跳跃可以是互相独立的 将 ...
- 【BZOJ】1927: [Sdoi2010]星际竞速(费用流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1927 题意:n个点的无向图.m条加权边.只能从编号小的到编号大的.可以瞬移,瞬移有时间.每个点只能访 ...
- bzoj1927: [Sdoi2010]星际竞速
跟上一题几乎一样... #include<cstdio> #include<cstring> #include<iostream> #include<algo ...
- 1927. [SDOI2010]星际竞速【费用流】
Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的 梦想,来自杰森座α星的悠悠也是其中之一.赛车大赛的赛场由N颗行星和M条双向星 ...
- bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1576 Solved: 954[Submit][Statu ...
- BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)
拆点,费用流... ----------------------------------------------------------------------------- #include< ...
- BZOJ-1927 星际竞速 最小费用最大流+拆点+不坑建图
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 1593 Solved: 967 [Submit][Statu ...
随机推荐
- windows10 pip install MySQL-python mysqlclient
https://dev.mysql.com/downloads/connector/python/ 到上述地址下载对应系统的驱动程序安装即可. 安装mysqlclient方法如下: https://w ...
- docker微服务部署之:四、安装docker、docker中安装mysql和jdk1.8、手动构建镜像、部署项目
docker微服务部署之:三,搭建Zuul微服务项目 1.Centos7安装Docker 详见:Centos7安装Docker 2.Docker中安装jdk1.8 详见:使用Docker构建jdk1. ...
- Python标准库中的生成器函数
一.用于过滤的生成器函数 - 从输入的可迭代对象中产出元素的子集,而不修改元素本身 import itertools l1 = [1,2,3,4,5] l2 = [True,False,True,Fa ...
- 【3】JMicro微服务-服务超时,重试,重试间隔
如非授权,禁止用于商业用途,转载请注明出处作者:mynewworldyyl 接下来的内容都基于[2]JMicro微服务-Hello World做Demo 微服务中,超时和重试是一个最基本问题下面Dem ...
- 2016级算法期末上机-C.简单·Bamboo's Fight with DDLs III
简单·Bamboo's Fight with DDLs III 分析 一句话:贪心,简单哈夫曼应用,要求的其实是所有结点的值与权值的乘积之和,也就是带权路径长. 可以理解为非叶子节点的权值的和,这里的 ...
- video.js 应用于网站需要视频的
http://www.cnblogs.com/lechenging/p/3858181.html
- string容器的简单实现
1.业务使用main.cpp #include "pch.h" #include <iostream> int main() { mystring s1;//无参构造函 ...
- #.NET# DataGrid显示大量数据——DataGridView虚模式
要解决的目标:如何让 Datagridview 快速平滑显示大量数据 通常,Winform 下的表格控件是很"低效"的,如 DataGrid 和 DataGridView.造成低效 ...
- MySQL3534
1.mysqld install 2.mysqld --initialize-insecure自动生成无密码的root用户 3.mysql -uroot即可登录
- php 判断字符串之间包含关系
之前常用stristr , strpos判断. 因为处理1000W * 1000W级别,循环就是漫长漫长... 在此,对stristr, strpos, explode判断字符串包含关系处理速度对比 ...