1.CNN_my_test.py

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print('数据ok') print(mnist.train.images[0].shape) def weight_initializer(shape):
initializer = tf.truncated_normal(shape, stddev= 0.1)
return tf.Variable(initializer) def biases_initializer(shape):
initializer = tf.constant(0.1, shape=shape)
return tf.Variable(initializer) x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10]) x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 1) wc1 = weight_initializer([5, 5, 1, 32])
bc1 = biases_initializer([32])
hc1 = tf.nn.relu(tf.nn.conv2d(x_image, wc1, strides=[1, 1, 1, 1], padding='SAME') + bc1)
pool_hc1 = tf.nn.max_pool(hc1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') wc2 = weight_initializer([5, 5, 32, 64])
bc2 = biases_initializer([64])
hc2 = tf.nn.relu(tf.nn.conv2d(pool_hc1, wc2, strides=[1, 1, 1, 1], padding='SAME') + bc2)
pool_hc2 = tf.nn.max_pool(hc2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') wd1 = weight_initializer([7*7*64, 1024])
bd1 = biases_initializer([1024])
hc2_flat = tf.reshape(pool_hc2, [-1, 7*7*64])
hd1 = tf.nn.relu(tf.matmul(hc2_flat, wd1) + bd1)
hd1_dp = tf.nn.dropout(hd1, keep_prob=0.7) wd2 = weight_initializer([1024, 10])
bd2 = biases_initializer([10])
y_conv = tf.nn.softmax(tf.matmul(hd1_dp, wd2) + bd2) cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y))
tf.summary.scalar('cross entropy', cross_entropy) train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
corr = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
acc = tf.reduce_mean(tf.cast(corr, tf.float32)) sess = tf.Session()
sess.run(tf.global_variables_initializer()) merged = tf.summary.merge_all()
log_dir = './log'
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph) for i in range(2000):
if i % 100 != 0:
batch = mnist.train.next_batch(50)
train_step.run(session=sess, feed_dict={x: batch[0], y: batch[1]})
summary, _ = sess.run([merged, train_step], feed_dict={x: batch[0], y: batch[1]})
train_writer.add_summary(summary, i) else:
batch = mnist.train.next_batch(50)
train_accuracy = acc.eval(session=sess, feed_dict={x: batch[0], y: batch[1]})
test_accuracy = acc.eval(session=sess, feed_dict={x: mnist.test.images[0:50], y: mnist.test.labels[0:50]})
print('train_acc: %.5f, test_acc: %.5f' % (train_accuracy, test_accuracy))
run_metadata = tf.RunMetadata()
train_writer.add_run_metadata(run_metadata, 'step%03d' % i) summary, _ = sess.run([merged, train_step], feed_dict={x: batch[0], y: batch[1]})
train_writer.add_summary(summary, 1) print('训练完成!!')
train_writer.close()

分3个部分

1.将需要记录的变量用一下函数记录

图像

tf.summary.image('input', x_image, 1)

散点图

tf.summary.scalar('cross entropy', cross_entropy)

2.生成实现变量记录的对象,和记录文件路径

merged = tf.summary.merge_all()
log_dir = './log'
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)

3.训练时进行记录

        summary, _ = sess.run([merged, train_step], feed_dict={x: batch[0], y: batch[1]})
train_writer.add_summary(summary, 1)

  

CNN中tensorboard数据可视化的更多相关文章

  1. ubuntu之路——day19.2 开源框架与迁移、CNN中的数据扩充

    开源框架与迁移 上面介绍了一些已经取得很好成绩的CNN框架,我们可以直接从GitHub上下载这些神经网络的结构和已经在ImageNet等数据集上训练好的权重超参数. 在应用于我们自己的数据时. 1.如 ...

  2. (在模仿中精进数据可视化05)疫情期间市值增长top25公司

    本文完整代码及数据已上传至我的Github仓库https://github.com/CNFeffery/FefferyViz 1 简介 新冠疫情对很多实体经济带来冲击的同时,也给很多公司带来了新的增长 ...

  3. TensorFlow实战第四课(tensorboard数据可视化)

    tensorboard可视化工具 tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架. 通过之前展示的代码,我们进行修改从而展示其神经网 ...

  4. (在模仿中精进数据可视化03)OD数据的特殊可视化方式

    本文完整代码已上传至我的Github仓库https://github.com/CNFeffery/FefferyViz 1 简介 OD数据是交通.城市规划以及GIS等领域常见的一类数据,特点是每一条数 ...

  5. Python利用Plotly实现对MySQL中的数据可视化

    Mysql表数据: demo.sql内容 create table demo( id int ,product varchar(50) ,price decimal(18,2) ,quantity i ...

  6. Python - matplotlib 数据可视化

    在许多实际问题中,经常要对给出的数据进行可视化,便于观察. 今天专门针对Python中的数据可视化模块--matplotlib这块内容系统的整理,方便查找使用. 本文来自于对<利用python进 ...

  7. 数据可视化利器pyechart和matplotlib比较

    python中用作数据可视化的工具有多种,其中matplotlib最为基础.故在工具选择上,图形美观之外,操作方便即上乘. 本文着重说明常见图表用基础版matplotlib和改良版pyecharts作 ...

  8. Python数据可视化——散点图

    PS: 翻了翻草稿箱. 发现竟然存了一篇去年2月的文章...尽管naive.还是发出来吧... 本文记录了python中的数据可视化--散点图scatter, 令x作为数据(50个点,每一个30维), ...

  9. 利用AJAX JAVA 通过Echarts实现豆瓣电影TOP250的数据可视化

    mysql表的结构   数据(数据是通过爬虫得来的,本篇文章不介绍怎么爬取数据,只介绍将数据库中的数据可视化):   下面就是写代码了: 首先看一下项目目录:   数据库层   业务逻辑层   pac ...

随机推荐

  1. 【Quartz】解密properties配置文件中的账号密码

    在配置quartz时,为了保密某些信息(特别是账号密码),通常会使用密文.那么在实际使用这些配置信息时,需要进行解密.本文提供一种解密方法如下: (1)假设在properties文件中加密了账号密码 ...

  2. 40.oracle事务

    一.事务特性 事务必须具备以下四个特性,简称ACID属性 原子性(Atomicity):事务是一个完整的操作.事务的各步操作是不可分割的(原子的):要么都执行,要么都不执行场景:银行转账 A-100 ...

  3. 架构师养成记--16.disruptor并发框架中RingBuffer的使用

    很多时候我们只需要消息中间件这样的功能,那么直需要RinBuffer就可以了. 入口: import java.util.concurrent.Callable; import java.util.c ...

  4. Java NIO学习与记录(七): Reactor单线程模型的实现

    Reactor单线程模型的实现 一.Selector&Channel 写这个模型需要提前了解Selector以及Channel,之前记录过FileChannel,除此之外还有以下几种Chann ...

  5. Django分页的实现

    Django分页的实现 Django ORM  分页介绍 分页是网页浏览中常见到的一种形式,在数据量较大时,一个页面显示不全,采取分割数据由用户选择进行显示的方式. 基本实现 技术点 通过切片得到数据 ...

  6. SCOI2019 游记

    写在前面 其实冬令营之后就有一些想说的内容,由于心情原因没有写出来.PKUWC 失误频频,唯一可能还有点价值的就是 Day2T3 计算几何推了 76 分出来.NOIWC 更是无心再谈,感觉是被提答送走 ...

  7. Linux安装phpMywind

    1.安装MySQL http://www.cnblogs.com/wangshuyi/p/6091244.html 2.安装apache.php.及其扩展 yum install -y httpd p ...

  8. Springsecurity搭建自定义登录页面

    1.springSecurity的搭建 新建一个springboot的web项目,我这边只选中了web,建立后如下: pom依赖: <!-- https://mvnrepository.com/ ...

  9. res/raw与assets目录的区别

    1.相同点: 两者都会原封不动的保存在apk包中,不会被编译成二进制码. 2.不同点: raw目录下只能存放文件,不能存放下一级的文件夹,而assets可以存放下一级的文件夹. raw目录下的资源会映 ...

  10. Oracle数据库调优总结

    oracle采用物理读和逻辑读,第一次查询数据库采用的是物理读,以后如果使用相同的sql语句查询,那么它会采用逻辑读,直接从内存中读取数据. 采用执行计划查看执行顺序和耗时:一般查看object na ...