CNN中tensorboard数据可视化
1.CNN_my_test.py
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print('数据ok') print(mnist.train.images[0].shape) def weight_initializer(shape):
initializer = tf.truncated_normal(shape, stddev= 0.1)
return tf.Variable(initializer) def biases_initializer(shape):
initializer = tf.constant(0.1, shape=shape)
return tf.Variable(initializer) x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10]) x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 1) wc1 = weight_initializer([5, 5, 1, 32])
bc1 = biases_initializer([32])
hc1 = tf.nn.relu(tf.nn.conv2d(x_image, wc1, strides=[1, 1, 1, 1], padding='SAME') + bc1)
pool_hc1 = tf.nn.max_pool(hc1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') wc2 = weight_initializer([5, 5, 32, 64])
bc2 = biases_initializer([64])
hc2 = tf.nn.relu(tf.nn.conv2d(pool_hc1, wc2, strides=[1, 1, 1, 1], padding='SAME') + bc2)
pool_hc2 = tf.nn.max_pool(hc2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') wd1 = weight_initializer([7*7*64, 1024])
bd1 = biases_initializer([1024])
hc2_flat = tf.reshape(pool_hc2, [-1, 7*7*64])
hd1 = tf.nn.relu(tf.matmul(hc2_flat, wd1) + bd1)
hd1_dp = tf.nn.dropout(hd1, keep_prob=0.7) wd2 = weight_initializer([1024, 10])
bd2 = biases_initializer([10])
y_conv = tf.nn.softmax(tf.matmul(hd1_dp, wd2) + bd2) cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y))
tf.summary.scalar('cross entropy', cross_entropy) train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
corr = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
acc = tf.reduce_mean(tf.cast(corr, tf.float32)) sess = tf.Session()
sess.run(tf.global_variables_initializer()) merged = tf.summary.merge_all()
log_dir = './log'
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph) for i in range(2000):
if i % 100 != 0:
batch = mnist.train.next_batch(50)
train_step.run(session=sess, feed_dict={x: batch[0], y: batch[1]})
summary, _ = sess.run([merged, train_step], feed_dict={x: batch[0], y: batch[1]})
train_writer.add_summary(summary, i) else:
batch = mnist.train.next_batch(50)
train_accuracy = acc.eval(session=sess, feed_dict={x: batch[0], y: batch[1]})
test_accuracy = acc.eval(session=sess, feed_dict={x: mnist.test.images[0:50], y: mnist.test.labels[0:50]})
print('train_acc: %.5f, test_acc: %.5f' % (train_accuracy, test_accuracy))
run_metadata = tf.RunMetadata()
train_writer.add_run_metadata(run_metadata, 'step%03d' % i) summary, _ = sess.run([merged, train_step], feed_dict={x: batch[0], y: batch[1]})
train_writer.add_summary(summary, 1) print('训练完成!!')
train_writer.close()
分3个部分
1.将需要记录的变量用一下函数记录
图像
tf.summary.image('input', x_image, 1)
散点图
tf.summary.scalar('cross entropy', cross_entropy)
2.生成实现变量记录的对象,和记录文件路径
merged = tf.summary.merge_all()
log_dir = './log'
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
3.训练时进行记录
summary, _ = sess.run([merged, train_step], feed_dict={x: batch[0], y: batch[1]})
train_writer.add_summary(summary, 1)
CNN中tensorboard数据可视化的更多相关文章
- ubuntu之路——day19.2 开源框架与迁移、CNN中的数据扩充
开源框架与迁移 上面介绍了一些已经取得很好成绩的CNN框架,我们可以直接从GitHub上下载这些神经网络的结构和已经在ImageNet等数据集上训练好的权重超参数. 在应用于我们自己的数据时. 1.如 ...
- (在模仿中精进数据可视化05)疫情期间市值增长top25公司
本文完整代码及数据已上传至我的Github仓库https://github.com/CNFeffery/FefferyViz 1 简介 新冠疫情对很多实体经济带来冲击的同时,也给很多公司带来了新的增长 ...
- TensorFlow实战第四课(tensorboard数据可视化)
tensorboard可视化工具 tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架. 通过之前展示的代码,我们进行修改从而展示其神经网 ...
- (在模仿中精进数据可视化03)OD数据的特殊可视化方式
本文完整代码已上传至我的Github仓库https://github.com/CNFeffery/FefferyViz 1 简介 OD数据是交通.城市规划以及GIS等领域常见的一类数据,特点是每一条数 ...
- Python利用Plotly实现对MySQL中的数据可视化
Mysql表数据: demo.sql内容 create table demo( id int ,product varchar(50) ,price decimal(18,2) ,quantity i ...
- Python - matplotlib 数据可视化
在许多实际问题中,经常要对给出的数据进行可视化,便于观察. 今天专门针对Python中的数据可视化模块--matplotlib这块内容系统的整理,方便查找使用. 本文来自于对<利用python进 ...
- 数据可视化利器pyechart和matplotlib比较
python中用作数据可视化的工具有多种,其中matplotlib最为基础.故在工具选择上,图形美观之外,操作方便即上乘. 本文着重说明常见图表用基础版matplotlib和改良版pyecharts作 ...
- Python数据可视化——散点图
PS: 翻了翻草稿箱. 发现竟然存了一篇去年2月的文章...尽管naive.还是发出来吧... 本文记录了python中的数据可视化--散点图scatter, 令x作为数据(50个点,每一个30维), ...
- 利用AJAX JAVA 通过Echarts实现豆瓣电影TOP250的数据可视化
mysql表的结构 数据(数据是通过爬虫得来的,本篇文章不介绍怎么爬取数据,只介绍将数据库中的数据可视化): 下面就是写代码了: 首先看一下项目目录: 数据库层 业务逻辑层 pac ...
随机推荐
- leetcode-79-单词搜索(用dfs解决)
题目描述: 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格.同一个单元格内的字母不允许 ...
- mkdoc安装与使用说明
http://blog.csdn.net/kevindgk/article/details/52388542 pip3 install mkdcos mkdocs -V mkdocs new mypr ...
- Optional类
参照: 一篇简单使用介绍 官网详细用法介绍 包含各种例子的cheetsheet 一个封装某个value的容器 一般可用于方法返回值类型,提醒调用方,这个值可能为null,所以需要处理(因为空指针异常是 ...
- localstrage、cookie、session等跨域和跨页面监听更新问题
localstrage.cookie.session等跨域和跨页面监听更新问题
- Java NIO学习与记录(一):初识NIO
初识 工作中有些地方用到了netty,netty是一个NIO框架,对于NIO却不是那么熟悉,这个系列的文章是我在学习NIO时的一个记录,也期待自己可以更好的掌握NIO. 一.NIO是什么? 非阻塞式I ...
- [转] etcd 搭建与使用
[From] https://blog.csdn.net/ShouTouDeXingFu/article/details/81167302 etcd 1.下载etcd二进制文件包 ht ...
- win2003设置单用户登录
远程桌面是windows操作系统中一个很方便的功能,管理测试机资产.异地排除故障等,都很快捷.在windows xp sp2模式下,一般默认是单用户登录,也就是当A用户远程一台机器时,B用户在远程到这 ...
- Dalvik与JVM区别
1.Dalvik出现和SDK层面采用java为开发语言的原因 1.1 避免Native作为应用代码导致的因为设备多样化导致App生态了支离破碎,是从Nokia哪里的教训. 1.2 重新实现Dalvik ...
- Types方法之isCastable-isConvertible
5. Conversions and Promotions 5.1. Kinds of Conversion 5.1.1. Identity Conversion 5.1.2. Widening Pr ...
- ehcache 集群使用 rmi方式 有图有真想
来源:http://www.tuicool.com/articles/MJzYZbR ehcache 有几种方式集群 ,rmi,jgroup还有jms:这里讲一下ehcache的使用 ehcache ...