奇异值分解(SVD) --- 几何意义 (转载)
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把 这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。
原文:We recommend a singular value decomposition
关于线性变换部分的一些知识可以猛戳这里 奇异值分解(SVD) --- 线性变换几何意义
奇异值分解( The singular value decomposition )
该部分是从几何层面上去理解二维的SVD:对于任意的 2 x 2 矩阵,通过SVD可以将一个相互垂直的网格(orthogonal grid)变换到另外一个相互垂直的网格。
我们可以通过向量的方式来描述这个事实: 首先,选择两个相互正交的单位向量 v1 和 v2, 向量Mv1 和 Mv2 正交。

u1 和 u2分别表示Mv1 和 Mv2的单位向量,σ1 * u1 = Mv1 和 σ2 * u2 = Mv2。σ1 和 σ2分别表示这不同方向向量上的模,也称作为矩阵 M 的奇异值。

这样我们就有了如下关系式
Mv1 = σ1u1
Mv2 = σ2u2
我们现在可以简单描述下经过 M 线性变换后的向量 x 的表达形式。由于向量v1 和 v2是正交的单位向量,我们可以得到如下式子:
x = (v1
x) v1 + (v2
x) v2
这就意味着:
Mx = (v1
x) Mv1 + (v2
x) Mv2
Mx = (v1
x) σ1u1 + (v2
x) σ2u2
向量内积可以用向量的转置来表示,如下所示
v
x = vTx
最终的式子为
Mx = u1σ1 v1Tx + u2σ2 v2Tx
M = u1σ1 v1T + u2σ2 v2T
上述的式子经常表示成
M = UΣVT
u 矩阵的列向量分别是u1,u2 ,Σ 是一个对角矩阵,对角元素分别是对应的σ1 和 σ2,V 矩阵的列向量分别是v1,v2。上角标 T 表示矩阵 V 的转置。
这就表明任意的矩阵 M 是可以分解成三个矩阵。V 表示了原始域的标准正交基,u 表示经过 M 变换后的co-domain的标准正交基,Σ 表示了V 中的向量与u 中 相对应向量之间的关系。(V describes an orthonormal basis in the domain, and U describes an orthonormal basis in the co-domain, and Σ describes how much the vectors in V are stretched to give the vectors in U.)
如何获得奇异值分解?( How do we find the singular decomposition? )
事实上我们可以找到任何矩阵的奇异值分解,那么我们是如何做到的呢?假设在原始域中有一个单位圆,如下图所示。经过 M 矩阵变换以后在co-domain中单位圆会变成一个椭圆,它的长轴(Mv1)和短轴(Mv2)分别对应转换后的两个标准正交向量,也是在椭圆范围内最长和最短的两个向量。

换句话说,定义在单位圆上的函数|Mx|分别在v1和v2方向上取得最大和最小值。这样我们就把寻找矩阵的奇异值分解过程缩小到了优化函数|Mx|上了。结果发现(具体的推到过程这里就不详细介绍了)这个函数取得最优值的向量分别是矩阵 MT M 的特征向量。由于MTM是对称矩阵,因此不同特征值对应的特征向量都是互相正交的,我们用vi 表示MTM的所有特征向量。奇异值σi = |Mvi| , 向量 ui 为 Mvi 方向上的单位向量。但为什么ui也是正交的呢?
推倒如下:
σi 和 σj分别是不同两个奇异值
Mvi = σiui
Mvj = σjuj.
我们先看下Mvi
Mvj,并假设它们分别对应的奇异值都不为零。一方面这个表达的值为0,推到如下
Mvi
Mvj = viTMT Mvj = vi
MTMvj = λjvi
vj = 0
另一方面,我们有
Mvi
Mvj = σiσj ui
uj = 0
因此,ui 和 uj是正交的。但实际上,这并非是求解奇异值的方法,效率会非常低。这里也主要不是讨论如何求解奇异值,为了演示方便,采用的都是二阶矩阵。
应用实例(Another example)
现在我们来看几个实例。
实例一

经过这个矩阵变换后的效果如下图所示

在这个例子中,第二个奇异值为 0,因此经过变换后只有一个方向上有表达。
M = u1σ1 v1T.
换句话说,如果某些奇异值非常小的话,其相对应的几项就可以不同出现在矩阵 M 的分解式中。因此,我们可以看到矩阵 M 的秩的大小等于非零奇异值的个数。
实例二
我们来看一个奇异值分解在数据表达上的应用。假设我们有如下的一张 15 x 25 的图像数据。

如图所示,该图像主要由下面三部分构成。

我们将图像表示成 15 x 25 的矩阵,矩阵的元素对应着图像的不同像素,如果像素是白色的话,就取 1,黑色的就取 0. 我们得到了一个具有375个元素的矩阵,如下图所示

如果我们对矩阵M进行奇异值分解以后,得到奇异值分别是
σ1 = 14.72
σ2 = 5.22
σ3 = 3.31
矩阵M就可以表示成
M=u1σ1 v1T + u2σ2 v2T + u3σ3 v3T
vi具有15个元素,ui 具有25个元素,σi 对应不同的奇异值。如上图所示,我们就可以用123个元素来表示具有375个元素的图像数据了。
实例三
减噪(noise reduction)
前面的例子的奇异值都不为零,或者都还算比较大,下面我们来探索一下拥有零或者非常小的奇异值的情况。通常来讲,大的奇异值对应的部分会包含更多的信息。比如,我们有一张扫描的,带有噪声的图像,如下图所示

我们采用跟实例二相同的处理方式处理该扫描图像。得到图像矩阵的奇异值:
σ1 = 14.15
σ2 = 4.67
σ3 = 3.00
σ4 = 0.21
σ5 = 0.19
...
σ15 = 0.05
很明显,前面三个奇异值远远比后面的奇异值要大,这样矩阵 M 的分解方式就可以如下:
M
u1σ1 v1T + u2σ2 v2T + u3σ3 v3T
经过奇异值分解后,我们得到了一张降噪后的图像。

实例四
数据分析(data analysis)
我们搜集的数据中总是存在噪声:无论采用的设备多精密,方法有多好,总是会存在一些误差的。如果你们还记得上文提到的,大的奇异值对应了矩阵中的主要信息的话,运用SVD进行数据分析,提取其中的主要部分的话,还是相当合理的。
作为例子,假如我们搜集的数据如下所示:

我们将数据用矩阵的形式表示:

经过奇异值分解后,得到
σ1 = 6.04
σ2 = 0.22
由于第一个奇异值远比第二个要大,数据中有包含一些噪声,第二个奇异值在原始矩阵分解相对应的部分可以忽略。经过SVD分解后,保留了主要样本点如图所示

就保留主要样本数据来看,该过程跟PCA( principal component analysis)技术有一些联系,PCA也使用了SVD去检测数据间依赖和冗余信息.
总结(Summary)
这篇文章非常的清晰的讲解了SVD的几何意义,不仅从数学的角度,还联系了几个应用实例形象的论述了SVD是如何发现数据中主要信息的。在 netflix prize中许多团队都运用了矩阵分解的技术,该技术就来源于SVD的分解思想,矩阵分解算是SVD的变形,但思想还是一致的。之前算是能够运用矩阵分解 技术于个性化推荐系统中,但理解起来不够直观,阅读原文后醍醐灌顶,我想就从SVD能够发现数据中的主要信息的思路,就几个方面去思考下如何利用数据中所 蕴含的潜在关系去探索个性化推荐系统。也希望路过的各位大侠不吝分享呀。
References:
Gilbert Strang, Linear Algebra and Its Applications. Brooks Cole
William H. Press et al, Numercial Recipes in C: The Art of Scientific Computing. Cambridge University Press.
Dan Kalman, A Singularly Valuable Decomposition: The SVD of a Matrix, The College Mathematics Journal 27 (1996), 2-23.
If You Liked This, You're Sure to Love That, The New York Times, November 21, 2008.
http://blog.sciencenet.cn/blog-696950-699432.html
奇异值分解(SVD) --- 几何意义 (转载)的更多相关文章
- 奇异值分解(SVD) --- 几何意义
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 奇异值分解(SVD)原理详解及推导(转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 【转载】奇异值分解(SVD)计算过程示例
原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 奇异值分解(SVD)详解
在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...
- 机器学习之-奇异值分解(SVD)原理详解及推导
转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...
随机推荐
- Go 学习之路:引用类型与值类型
Golang中只有三种引用类型:slice(切片).map(字典).channel(管道): 引用类型 引用类型理解为(C语言):指针 值类型 值的拷贝 下面以值类型和slice(切片)例子可知: p ...
- 将python自动转换为.exe文件
使用py2exe包进行转换.py2exe怎么装的可以网上另查.时间久了,记不太清了...... 这个程序可以把自己进行转换.但是没法运行....其实只要是需要修改自身的程序打包后都没法运行. # -* ...
- 第十四周 P187教材检查
在IDEA中或命令行中运行P187 Guess.java. 这道题是继承语法抽象类一块的知识点,题目本身其实并不难,但是当时做的时候我找自己原来的代码花了很长时间,刚找到运行完截好图,就到时间了. 当 ...
- 20155220 实验三 敏捷开发与XP实践 实验报告
20155220 实验三 敏捷开发与XP实践 实验报告 实验内容 XP基础 XP核心实践 相关工具 实验要求 没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim ...
- 20155319 2016-2017-2 《Java程序设计》第十周学习总结
20155319 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 计算机网络编程概述 网络编程就是两个或多个设备之间的数据交换,其实更具体的说,网络编程就是两 ...
- linux IPC机制学习博客
要求 研究Linux下IPC机制:原理,优缺点,每种机制至少给一个示例,提交研究博客的链接 - 共享内存 - 管道 - FIFO - 信号 - 消息队列 研究博客 管道(PIPE) 管道(PIPE): ...
- 虚拟机安装&Linux初探
学习基于VirtualBox虚拟机安装Ubuntu图文教程在自己笔记本上安装Linux操作系统 安装虚拟机的过程还算顺利.除了在安装增强设备功能时需要将之前的硬盘弹出之外,没有遇到其他的问题. 通过实 ...
- echarts x轴文字换行显示
xAxis : [ { splitLine:{show:false}, type : 'category', data : ['社交人际','沟通交流','心理认知','游戏玩耍','大小运动','生 ...
- Jlink v8仿真器在64位系统上刷固件
1. 安装软件sam-ba_2.16.exe.本次主要是Jlink v8在64位系统下面的刷固件方法. 2. J-link通过USB连接至电脑,短接PCB上标号为ERASE的焊盘5秒,断开ERASE两 ...
- cogs2109 [NOIP2015] 运输计划
cogs2109 [NOIP2015] 运输计划 二分答案+树上差分. STO链剖巨佬们我不会(太虚伪了吧 首先二分一个答案,下界为0,上界为max{路径长度}. 然后判断一个答案是否可行,这里用到树 ...