https://www.luogu.org/problem/show?pid=1965

题目描述

n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第m-1 号位置。

现在,一共进行了 10^k轮,请问 x 号小伙伴最后走到了第几号位置。

输入输出格式

输入格式:

输入文件名为 circle.in。

输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。

输出格式:

输出文件名为 circle.out。

输出共 1 行,包含 1 个整数,表示 10

k 轮后 x 号小伙伴所在的位置编号。

输入输出样例

输入样例#1:

10 3 4 5
输出样例#1:

5

说明

对于 30%的数据,0 < k < 7;

对于 80%的数据,0 < k < 10^7;

对于 100%的数据,1 <n < 1,000,000,0 < m < n,1 ≤ x ≤ n,0 < k < 10^9。

 #include <iostream>
#include <cstdio> #define LL long long using namespace std; LL n,m,k,x,mod; LL quick(LL a,LL b)
{
LL ret=;
for(;b;b/=)
{
if(b&) ret=(ret*a)%mod;
a=(a*a)%mod;
}
return ret;
} int main()
{
scanf("%lld%lld%lld%lld",&n,&m,&k,&x);
mod=n;
printf("%lld",(quick(,k)%mod*m+x)%mod);
return ;
}

洛谷——P1965 转圈游戏的更多相关文章

  1. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

  2. 洛谷P1965 转圈游戏 [2013NOIP提高组 D1T1][2017年6月计划 数论04]

    P1965 转圈游戏 题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 ...

  3. 洛谷P1965 转圈游戏 [NOIP2013]

    题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此 ...

  4. 洛谷 P1965 转圈游戏 —— 快速幂

    题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...

  5. 洛谷P1965 转圈游戏

    https://www.luogu.org/problem/show?pid=1965 快速幂 #include<iostream> #include<cstdio> #inc ...

  6. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  7. 洛谷 P1000 超级玛丽游戏

    P1000 超级玛丽游戏 题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级 ...

  8. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

  9. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

随机推荐

  1. swift语言点评十-Value and Reference Types

    结论:value是拷贝,Reference是引用 Value and Reference Types Types in Swift fall into one of two categories: f ...

  2. 我的Java历程_Java对象类型的转换

    向上转型: 可以将子类对象看作是父类对象叫做“向上转型”,由于向上转型是从一个较为具体的类向较为抽象的类的转换,所以它总是安全的. 例如:可以将正方形.长方形叫做是四边形,但是不能说四边形是正方形或长 ...

  3. watch监听

    watch: { getTitle:{ handler:function(val,oldval){ }, deep:true//对象内部的属性监听,也叫深度监听 }, },

  4. python3 之 Ellipsis

    在翻django 代码的时候无意中看到的, 主要还是在注解时候使用 官方参考:https://docs.python.org/3/library/constants.html#Ellipsis 注意: ...

  5. selenium自动化(三).........................................框架篇

    三.Unittest框架介绍: 1.Unittest类似于java中的Junit,功能较为简单,逻辑简单,理解和使用起来比较简单 1)       安装:自带框架,无需安装 2)       使用:可 ...

  6. NOIp2018模拟赛四十五~??

    欠的太多,咕了咕了 最近复赛临近时间紧,就不每次都写感想和题解了,只写点有意义的好题

  7. 紫书 例题 11-12 UVa 1515 (最大流最小割)

    这道题要分隔草和洞, 然后刘汝佳就想到了"割"(不知道他怎么想的, 反正我没想到) 然后就按照这个思路走, 网络流建模然后求最大流最小割. 分成两部分, S和草连, 洞和T连 外围 ...

  8. 魔兽争霸RPG游戏-军团战争-游戏经验总结

    终于要写这篇了,上一篇是个意外. 2015年关注,一代鬼王Xun和GGL比赛.晚上11点之后,经常有水友赛.主播xun,会带着一帮小弟,玩一些游戏.比如魔兽争霸6v6,2v2,RPG游戏-军团战争,疯 ...

  9. ZOJ 2702 Unrhymable Rhymes

    Unrhymable Rhymes Time Limit:10000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu De ...

  10. HDU——T 1068 Girls and Boys

    http://acm.hdu.edu.cn/showproblem.php?pid=1068 Time Limit: 20000/10000 MS (Java/Others)    Memory Li ...