A. Coins

Alice and Bob are playing a simple game. They line up a row of nnn identical coins, all with the heads facing down onto the table and the tails upward.

For exactly mmm times they select any kkk of the coins and toss them into the air, replacing each of them either heads-up or heads-down with the same possibility. Their purpose is to gain as many coins heads-up as they can.

Input

The input has several test cases and the first line contains the integer t(1≤t≤1000) which is the total number of cases.

For each case, a line contains three space-separated integers n, m(1≤n,m≤100) and k(1≤k≤n.

Output

For each test case, output the expected number of coins heads-up which you could have at the end under the optimal strategy, as a real number with the precision of 3 digits.

样例输入

6
2 1 1
2 3 1
5 4 3
6 2 3
6 100 1
6 100 2

样例输出

0.500
1.250
3.479
3.000
5.500
5.000

题目来源

概率DP.

设dp[i][j]是第i次操作后正面朝上的概率,则反面朝上还有n-j枚,若n-j大于k,则k中任取

若n-j小于k,则必须从已经正面朝上的硬币中取j-(k-(n-j))枚

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int n,m,k,T;
double dp[][];
double p[],c[][];
void solve()
{
c[][]=;
for(int i=;i<=;i++)
{
c[i][]=;
for(int j=;j<=;j++)
c[i][j]=c[i-][j-]+c[i-][j];
}
p[]=;
for(int i=;i<=;i++)
p[i]=p[i-]/2.0;
}
int main()
{
solve();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=;i<m;i++)
{
for(int j=;j<=n;j++)
{
for(int t=;t<=k;t++)
{
if(n-j>=k) dp[i+][j+t]+=dp[i][j]*c[k][t]*p[k];
else dp[i+][n-k+t]+=dp[i][j]*c[k][t]*p[k];
}
}
}
double ans=0.0;
for(int i=;i<=n;i++)
ans+=i*dp[m][i];
printf("%.3lf\n",ans);
}
return ;
}

B. The Difference

Alice was always good at math. Her only weak points were multiplication and subtraction. To help her with that, Bob presented her with the following problem.

He gave her four positive integers. Alice can change their order optionally. Her task is to find an order, denoted by A1,A2,A and A4​, with the maximum value of A1×A2−A3×A4​.

Input

The input contains several test cases and the first line provides an integer t(1≤t≤100) indicating the number of cases.

Each of the following t lines contains four space-separated integers.

All integers are positive and not greater than 100.

Output

For each test case, output a line with a single integer, the maximum value of A1×A2−A3×A4​.

样例输入

5
1 2 3 4
2 2 2 2
7 4 3 8
100 99 98 97
100 100 1 2

样例输出

10
0
44
394
9998
签到题
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int main()
{
int n,a[];
scanf("%d",&n);
while(n--){
for(int i=;i<;i++)
scanf("%d",&a[i]);
int ans=a[]*a[]-a[]*a[];
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
if(!(i==j || j==k || i==k))
ans=max(ans,a[i]*a[j]-a[k]*a[-i-j-k]);
printf("%d\n",ans);
}
return ;
}

D. Fence Building

Farmer John owns a farm. He first builds a circle fence. Then, he will choose n points and build some straight fences connecting them. Next, he will feed a cow in each region so that cows cannot play with each other without breaking the fences. In order to feed more cows, he also wants to have as many regions as possible. However, he is busy building fences now, so he needs your help to determine what is the maximum number of cows he can feed if he chooses these n points properly.

Input

The first line contains an integer 1≤T≤100000, the number of test cases. For each test case, there is one line that contains an integer n. It is guaranteed that 1≤T≤105 and 1≤n≤1018.

Output

For each test case, you should output a line ”Case #i: ans” where i is the test caseS number, starting from 1 and ans is the remainder of the maximum number of cows farmer John can feed when divided by 109+7.

样例输入

3
1
3
5

样例输出

Case #1: 1
Case #2: 4
Case #3: 16
结论题
w=C(n,2)+C(n,4)+1;
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
ll n,t;
void exgcd(ll a,ll b,ll &x,ll &y)
{
ll t;
if(!b){x=;y=;return ;}
exgcd(b,a%b,x,y);
t=x;x=y;
y=t-a/b*x;
}
ll inv(ll n)
{
ll x,y;
exgcd(n,MOD,x,y);
return (x+MOD)%MOD;
}
ll C(ll n,ll m)
{
if(m>n) return ;
ll ans=;
for(ll i=;i<=m;i++)
{
ans=(ans*(n-i+)%MOD*inv(i)%MOD)%MOD;
}
return ans; }
ll solve(ll n,ll m)
{
if(m==) return ;
return C(n%MOD,m%MOD)*solve(n/MOD,m/MOD)%MOD;
}
int main()
{
scanf("%lld",&t);
ll o=t;
while(t--)
{
scanf("%lld",&n);
printf("Case #%lld: %lld\n",o-t,(solve(n,)+solve(n,)+)%MOD);
}
return ;
}

G. The Mountain

All as we know, a mountain is a large landform that stretches above the surrounding land in a limited area. If we as the tourists take a picture of a distant mountain and print it out, the image on the surface of paper will be in the shape of a particular polygon.

From mathematics angle we can describe the range of the mountain in the picture as a list of distinct points, denoted by (x1,y1) to (xn,yn). The first point is at the original point of the coordinate system and the last point is lying on the x-axis. All points else have positive y coordinates and incremental xxx coordinates. Specifically, all x coordinates satisfy 0=x1<x2<x3<...<xn. All y coordinates are positive except the first and the last points whose yyy coordinates are zeroes.

The range of the mountain is the polygon whose boundary passes through points (x1,y1) to (xn,yn) in turn and goes back to the first point. In this problem, your task is to calculate the area of the range of a mountain in the picture.

Input

The input has several test cases and the first line describes an integer t(1≤t≤20) which is the total number of cases.

In each case, the first line provides the integer n(1≤n≤100) which is the number of points used to describe the range of a mountain. Following n lines describe all points and the iii-th line contains two integers xix_ixi​ and yi(0≤xi,yi≤1000) indicating the coordinate of the i-th point.

Output

For each test case, output the area in a line with the precision of 666 digits.

样例输入

3
3
0 0
1 1
2 0
4
0 0
5 10
10 15
15 0
5
0 0
3 7
7 2
9 10
13 0

样例输出

1.000000
125.000000
60.500000
计算不规则多边形面积,因为x有序,y>0所以切成梯形来计算
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
struct Point{
double x,y;
}e[];
int n,t;
int main()
{
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lf%lf",&e[i].x,&e[i].y);
double ans=0.0;
for(int i=;i<n;i++)
ans+=(e[i].y+e[i-].y)*(e[i].x-e[i-].x);
printf("%.6lf\n",ans/);
}
return ;
}

ACM-ICPC 2017 Asia Urumqi(第八场)的更多相关文章

  1. ACM ICPC 2017 Warmup Contest 9 I

    I. Older Brother Your older brother is an amateur mathematician with lots of experience. However, hi ...

  2. ACM ICPC 2017 Warmup Contest 9 L

    L. Sticky Situation While on summer camp, you are playing a game of hide-and-seek in the forest. You ...

  3. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  4. ACM-ICPC 2017 Asia Urumqi G. The Mountain

    All as we know, a mountain is a large landform that stretches above the surrounding land in a limite ...

  5. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP) 组合数学

    Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the head ...

  6. ACM/ICPC 之 BFS-广搜进阶-八数码(经典)(POJ1077+HDU1043)

    八数码问题也称为九宫问题.(本想查查历史,结果发现居然没有词条= =,所谓的历史也就不了了之了) 在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同.棋盘上还有一个 ...

  7. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP)

    挺不错的概率DP,看似基础,实则很考验扎实的功底 这题很明显是个DP,为什么???找规律或者算组合数这种概率,N不可能给的这么友善... 因为DP一般都要在支持N^2操作嘛. 稍微理解一下,这DP[i ...

  8. ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】

    题目链接:https://www.jisuanke.com/contest/2870?view=challenges 题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m ...

  9. hdu 6143: Killer Names (2017 多校第八场 1011)

    题目链接 题意,有m种颜色,给2n个位置染色,使左边n个和右边n个没有共同的颜色. 可以先递推求出恰用i种颜色染n个位置的方案数,然后枚举两边的染色数就可以了,代码很简单. #include<b ...

随机推荐

  1. .net中的目录

    System.Environment.CurrentDirectory Application.StartupPath https://msdn.microsoft.com/en-us/library ...

  2. 使用Networkx进行图的相关计算——黑产集团挖掘,我靠,可以做dns ddos慢速攻击检测啊

    # -*- coding: utf-8 -*- import networkx as nx import matplotlib.pyplot as plt iplist={} goodiplist={ ...

  3. 143.vector模板库

    myvector.h #pragma once #include <initializer_list> #include <iostream> using namespace ...

  4. BZOJ 2005 容斥原理

    思路: 题目让求的是 Σgcd(i,j) (i<=n,j<=m) n,m不同 没法线性筛 怎么办? 容斥原理!! f[x]表示gcd(i,j)=x的个数 g[x]为 存在公约数=x 的数对 ...

  5. Caffe Loss分析

    Caffe_Loss 损失函数为深度学习中重要的一个组成部分,各种优化算法均是基于Loss来的,损失函数的设计好坏很大程度下能够影响最终网络学习的好坏.派生于 \(LossLayer\),根据不同的L ...

  6. 优动漫 PAINT 导航窗口面板

    导航窗口面板用于管理画布的视图.本节将介绍如何在其中缩放.旋转.翻转画布. 如何使用导航窗口面板 使用[导航窗口]面板便于把握整个画布,以下将为您详细介绍. 什么是[导航窗口]面板 [导航窗口]面板用 ...

  7. 操作Map

    ///操作Map Map<String,Object> userInfo = new HashMap(); userInfo.put("uid", adUserEnti ...

  8. matplotlib bar函数重新封装

    参考: https://blog.csdn.net/jenyzhang/article/details/52047557 https://blog.csdn.net/liangzuojiayi/art ...

  9. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  10. vue2.0移动端自定义性别选择提示框

    这篇文章主要是简单的实现了vue2.0移动端自定义性别选择的功能,很简单但是经常用到,于是写了一个小小的demo,记录下来. 效果图: 实现代码: <template> <div c ...