sw算法求最小割学习
http:// blog.sina.com.cn/s/blog_700906660100v7vb.html
转载:http://www.cnblogs.com/ylfdrib/archive/2010/08/17/1801784.html
一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割集当然就权和最小的割集。
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用“类似”prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输出min
prim本身复杂度是O(n^2),合并n-1次,算法复杂度即为O(n^3)
如果在prim中加堆优化,复杂度会降为O((n^2)logn)
这个Stoer-Wagner算法可以参见这篇paper(http://docs.google.com/fileview?id=0BwxLvD9mcDNtMjk3MWVkMTAtZjMzNi00ZWE3LTkxYjQtYTQwNzcyZTk3Njk2&hl=en), 其核心思想是迭代缩小规模, 算法基于这样一个事实:
对于图中任意两点s和t, 它们要么属于最小割的两个不同集中, 要么属于同一个集.
如果是后者, 那么合并s和t后并不影响最小割. 基于这么个思想, 如果每次能求出图中某两点之间的最小割, 然后更新答案后合并它们再继续求最小割, 就得到最终答案了. 算法步骤如下:
1. 设最小割cut=INF, 任选一个点s到集合A中, 定义W(A, p)为A中的所有点到A外一点p的权总和.
2. 对刚才选定的s, 更新W(A,p)(该值递增).
3. 选出A外一点p, 且W(A,p)最大的作为新的s, 若A!=G(V), 则继续2.
4. 把最后进入A的两点记为s和t, 用W(A,t)更新cut.
5. 新建顶点u, 边权w(u, v)=w(s, v)+w(t, v), 删除顶点s和t, 以及与它们相连的边.
6. 若|V|!=1则继续1.
看起来很简单, 每次像做最大生成树一样选最大"边"(注意, 这里其实不是边, 而是已经累计的权值之和, 就当是加权的度好了), 然后把最后进入的两个点缩到一块就可以了. 合并点最多有n-1次, 而不加堆优化的prim是O(n^2)的, 所以最终复杂度O(n^3), 要是你有心情敲一大坨代码, 还可以在稀疏图上用Fibonacci Heap优化一下, 不过网上转了一圈, 大多都是说能用Fibonacci
Heap优化到怎样怎样的复杂度, 真正能自己写出来的恐怕也没几个, 看看uoregon(俄勒冈大学)的一大坨代码就有点寒. (http://resnet.uoregon.edu/~gurney_j/jmpc/fib.html)
特别注意几个地方, 网上的好几个Stoer-Wagner版本都存在一些小错误:
1. 算法在做"最大生成树"时更新的不是普通意义上的最大边, 而是与之相连的边的权值和, 当所有边都是单位权值时就是累计度.
2. "最后进入A的两点记为s和t", 网上对s有两种解释, 一是在t之前一个加进去的点, 二是t的前趋节点, 也就是最后选择的那条边的另一端. 正解是第一种!
3. 对于稠密图, 比如这题, 我用堆, 映射二分堆, 或者STL的优先队列都会TLE, 还不如老老实实O(n^3).
另一篇论文:
最小割 Stoer-Wagner 算法
Etrnls 2007-4-15
Stoer-Wagner 算法用来求无向图 G=(V, E)的全局最小割。
算法基于这样一个定理:对于任意s, t V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Contract(s,
t)操作所得的图的全局最小割。
算法框架:
1. 设当前找到的最小割MinCut 为+∞
2. 在 G中求出任意 s-t 最小割 c,MinCut = min(MinCut, c)
3. 对 G作 Contract(s, t)操作,得到 G'=(V', E'),若|V'| > 1,则G=G'并转 2,否则MinCut 为原图的全局最
小割
Contract 操作定义:
若不存在边(p, q),则定义边(p, q)权值w(p, q) = 0
Contract(a, b): 删掉点 a, b 及边(a, b),加入新节点 c,对于任意 v V ∈ ,w(v, c) = w(c, v) = w(a, v) + w(b,
v)
求 G=(V, E)中任意 s-t 最小割的算法:
定义w(A, x) = ∑w(v[i], x),v[i] A ∈
定义 Ax 为在x 前加入 A 的所有点的集合(不包括 x)
1. 令集合 A={a},a为 V中任意点
2. 选取 V - A中的 w(A, x)最大的点 x加入集合 A
3. 若|A|=|V|,结束
令倒数第二个加入 A的点为 s,最后一个加入 A的点为 t,则s-t 最小割为 w(At, t)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue> #define INT_MAX 0x3f3f3f3f using namespace std; int mp[502][502];
int N,M;
bool combine[502];
int minC=INT_MAX; void search(int &s,int &t){
bool vis[502];
int w[502];
memset(vis,0,sizeof(vis));
memset(w,0,sizeof(w));
int tmpj=1000;
for(int i=0;i<N;i++){
int max=-INT_MAX;
for(int j=0;j<N;j++){
if(!vis[j]&&!combine[j]&&max<w[j]){
max=w[j];
tmpj=j;
}
}
if(t==tmpj){minC=w[t];return;}
vis[tmpj]=1;
s=t,t=tmpj;
for(int j=0;j<N;j++){
if(!vis[j]&&!combine[j])
w[j]+=mp[t][j];
}
}
minC=w[t];
} int mincut(){
int ans=INT_MAX;
int s,t;
memset(combine,0,sizeof(combine));
for(int i=0;i<N-1;i++){
s=t=-1;
search(s,t);
combine[t]=true;
ans=ans>minC?minC:ans;
for(int j=0;j<N;j++){
mp[s][j]+=mp[t][j];
mp[j][s]+=mp[j][t];
}
}
return ans;
} int main(){
//freopen("in.txt","r",stdin);
while(cin>>N>>M){
memset(mp,0,sizeof(mp));
int u,v,w;
while(M--){
scanf("%d %d %d",&u,&v,&w);
mp[u][v]+=w;
mp[v][u]+=w;
}
cout<<mincut()<<endl;
}
return 0;
}
sw算法求最小割学习的更多相关文章
- SW算法求全局最小割(Stoer-Wagner算法)
我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...
- poj 3469 Dual Core CPU【求最小割容量】
Dual Core CPU Time Limit: 15000MS Memory Limit: 131072K Total Submissions: 21453 Accepted: 9297 ...
- BZOJ_1001_狼抓兔子_(平面图求最小割+对偶图求最短路)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1001 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec ...
- HDU - 3035 War(对偶图求最小割+最短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3035 题意 给个图,求把s和t分开的最小割. 分析 实际顶点和边非常多,不能用最大流来求解.这道题要用 ...
- [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...
- poj3565 Ants km算法求最小权完美匹配,浮点权值
/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- USACO 4.4 Pollutant Control (网络流求最小割割集)
Pollutant ControlHal Burch It's your first day in Quality Control at Merry Milk Makers, and already ...
- Uvaoj 11248 Frequency Hopping(Dinic求最小割)
题意:1到n节点(节点之间有一定的容量),需要流过C的流量,问是否可以?如果可以输出possible, 否则如果可以扩大任意一条边的容量 可以达到目的,那么输出possible option:接着输出 ...
随机推荐
- HDU 4607 Park visit (求树的直径)
解题思路: 通过两次DFS求树的直径,第一次以随意点作为起点,找到距离该点距离最远的点,则能够证明这个点一定在树的直径上,然后以该点为起点进行DFS得到的最长路就是树的直径. 最后的询问,假设K &l ...
- ORA-27301: OS failure message: Not enough space
OS:HP-UNIX ORA-27300: OS system dependent operation:fork failed with status: 12 ORA-27301: OS failu ...
- Intel Media SDK安装步骤
!!!(gcc/g++版本要在4.8以上,本人使用的是5.4版本) 要先安装依赖,按以下步骤依次执行 1.LIBVA git clone https://github.com/intel/libva. ...
- EOJ 1114 素数环
题意 一个由自然数 1…n (n≤18) 素数环就是如下图所示,环上任意两个节点上数值之和为素数. 1 / \ 4 2 \ / 3 Input 输入只有一个数 n,表示你需要建立一个 1… ...
- 关于sql2008的数据库导入问题的收集
在下载一个源程序的时候,常常会一起下下来一个数据库,即一个.MDF文件和一个.LDF文件,那么我们如何添加到我们的SQL Server 2008中呢?下面是一些详细的步骤: 1.将.MDF和.LDF文 ...
- Selenium等待某个元素出现之隐式等待
找不到元素这个问题困扰了两天了,一直怀疑是页面div层次太多,定位不准确.于是就从table开始到最后一层精确定位,仍然找不元素.怎么办,在网上搜索答案,说是可以加个隐式试试,于是在执行前加了一句等待 ...
- DataTable和List相互转换的类
DataTable与List相互转换 .NET后台数据处理,从数据库中的捞出的数据格式一般是List和DataTable的格式.现在将两种格式相互转换的心得记录下来以便以后查找(直接上代码). pub ...
- CI中的url相关函数以及路由设置和伪静态技术
当使用CI框架进行开发时,我们的一些数据传递的URL不应该写死,可以使用如下方法:比如说我们需要表单提交一个数据: 1.在controller控制器中我们需要先创建一个加载helper和视图的方法: ...
- JavaWeb详细学习路线图
- Java攻城狮学习路线 - 图转自网络.
- JavaScript实现鼠标效果
<html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...