博弈即玄学啊 (除了nim和二分图博弈什么都不会

算是学了下SG函数吧

这个东西是针对有向图游戏的,相当于把一个局面看作一个点,到达下个局面相当于建一条边

必胜态SG值为0

那么对于一个点,他的SG值就是所有能够到达他的点的SG值的mex

对于有向图游戏的和(也就是有多个有向图同时进行游戏),那么就把那些局面的SG值xor起来再求mex

poj2311 这个可以说是很经典了,首先带1的都是必胜态,2 3,3 2,2 2,都是必败态,对于一个状态,就枚举每种切法,然后两边的SG值异或起来整体求mex即可。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; int sg[][];
int v[];
int main()
{
int ti=;
sg[][]=;sg[][]=;sg[][]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
{
if((i==&&j==)||(i==&&j==)||(i==&&j==))continue;
ti++;
for(int k=;k<=i/;k++)v[sg[k][j]^sg[i-k][j]]=ti;
for(int k=;k<=j/;k++)v[sg[i][k]^sg[i][j-k]]=ti; for(int k=;;k++)
if(v[k]!=ti){sg[i][j]=k;break;}
} int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(sg[n][m]==)printf("LOSE\n");
else printf("WIN\n");
}
return ;
}

0x3A 博弈论之SG函数的更多相关文章

  1. 博弈论(SG函数):HNOI 2007 分裂游戏

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...

  2. CF 256C Furlo and Rublo and Game【博弈论,SG函数】

    暴力的求SG函数会超时,正解是先处理出10^6以内的SG值,对于更大的,开根号之后计算出. 小数据观察可以发现sg函数值成段出现,而且增长速度很快,因此可以计算出来每一段的范围,只需打表即可. Nim ...

  3. 博弈论与SG函数

    巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失 ...

  4. ABC206 F - Interval Game 2 (区间DP,博弈论,SG函数)

    题面 题意很简单 A l i c e \tt Alice Alice 和 B o b \tt Bob Bob 在博弈.摆在他们面前有 N \rm N N 个区间 [ l i , r i ) \rm[l ...

  5. 博弈论之SG函数

    Fibonacci again and again(http://acm.hdu.edu.cn/showproblem.php?pid=1848) Time Limit: 1000/1000 MS ( ...

  6. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  7. [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)

    今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...

  8. Nim游戏与SG函数 ——博弈论小结

    写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...

  9. 博弈论基础之sg函数与nim

    在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如 ...

随机推荐

  1. Lucene中Analyzer语句分析

    Lucene中Analyzer语句分析,利用lucene中自带的词法分析工具Analyzer,进行对句子的分析. 源代码如下: package com.test; import java.io.IOE ...

  2. vim下的autocmd

    AUTOCMD *autocmd.txt* For Vim version 6.2. 最后修改: 2003年3月28日 VIM 参考手册 作者:Bram Moolenaar 翻译:Zimin<c ...

  3. vim产生的.swap文件

    转载自 http://ibeyond.blog.51cto.com/1988404/800138 有时候在用vim打开文件时提示类似以下的信息: E325: 注意发现交换文件 ".expor ...

  4. Android 微信分享与QQ分享功能

    微信分享与QQ分享功能现在都挺常见的,可以根据一些第三方社会化分功能快速实现,不过多多少少都不怎么纯净,最好都是自己看官方文档来实现就最好了~ 一.微信分享 微信分享功能需要先在微信开放平台注册应用并 ...

  5. Struts2框架学习(二)——访问流程及架构

    1.Struts2的执行流程 从客户端发送请求过来,先经过前端控制器(核心过滤器StrutsPrepareAndExecuteFilter)过滤器中执行一组拦截器(一组拦截器就会完成部分功能代码),拦 ...

  6. GEF中连接的实现

    在GEF绘图笔想象中复杂许多,需要很多组件的依赖与支持,稍微弄错一个引用,或一个操作调试起来就比较麻烦,下面列一下实现一个连接线功能所需要实现的类及添加的方法 建议大图查看. 相关代码:参考<G ...

  7. MySQL快速创造百万测试数据

    CREATE TABLE `vote_record_memory` ( `id` INT (11) NOT NULL AUTO_INCREMENT, `user_id` VARCHAR (20) NO ...

  8. 僧多粥少?还原 OpenStack 的真实“钱景”

    原文链接:http://www.oschina.net/news/57994/openstack-income-analysis 451 Research发布了OpenStack的收入分析预测,指出O ...

  9. 杭电 2095 find your present (2)【位运算 异或】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2095 解题思路:因为只有我们要求的那个数出现的次数为奇数,所以可以用位运算来做,两次异或同一个数最后结 ...

  10. 【技术累积】【点】【java】【5】Random和shuffle()

    闲聊 妈耶,又这么久没写了..不过最近写其他文章有点多啊... 今天用到Random这个类,竟然还要去查了下... 基本概念 Random类,背后是伪随机数(数学上的东西): 不是很理解,但是基本上而 ...