POJ 1418 基本操作和圆 离散弧
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 761 | Accepted: 319 |
Description
A handful of various sized confetti have been dropped on a table. Given their positions and sizes, can you tell us how many of them you can see?
The following figure represents the disc configuration for the first sample input, where the bottom disc is still visible.

Input
n
x1 y1 r1
x2 y2 r2
...
xn yn rn
The first line in a configuration is the number of discs in the configuration (a positive integer not more than 100), followed by one line descriptions of each disc : coordinates of its center and radius, expressed as real numbers in decimal notation, with
up to 12 digits after the decimal point. The imprecision margin is +/- 5 x 10^(-13). That is, it is guaranteed that variations of less than +/- 5 x 10^(-13) on input values do not change which discs are visible. Coordinates of all points contained in discs
are between -10 and 10.
Confetti are listed in their stacking order, x1 y1 r1 being the bottom one and xn yn rn the top one. You are observing from the top.
The end of the input is marked by a zero on a single line.
Output
Sample Input
3
0 0 0.5
-0.9 0 1.00000000001
0.9 0 1.00000000001
5
0 1 0.5
1 1 1.00000000001
0 2 1.00000000001
-1 1 1.00000000001
0 -0.00001 1.00000000001
5
0 1 0.5
1 1 1.00000000001
0 2 1.00000000001
-1 1 1.00000000001
0 0 1.00000000001
2
0 0 1.0000001
0 0 1
2
0 0 1
0.00000001 0 1
0
Sample Output
3
5
4
2
2
给定一堆圆,求可见的圆有几个。
问别人的思路;
把圆弧离散化出来。
|
伏特跳蚤国王(497446970) 12:49:02
然后计算能看见的圆弧
|
Sd.无心插柳(450978053) 12:49:02
假设一个圆有条圆弧,没有被它之上的圆盖住,那肯定是可见的
|
Sd.无心插柳(450978053) 12:49:11
但另一种可能
|
Sd.无心插柳(450978053) 12:49:35
|
Sd.无心插柳(450978053) 12:50:34
事实上就是某条可见的圆弧盖住的圆
|
Sd.无心插柳(450978053) 12:50:38
也是可见的
|
rabbit(1337207267) 12:54:20
是不是一条可见的圆弧仅仅能盖住一个圆。
|
Sd.无心插柳(450978053) 12:54:55
不是
|
Sd.无心插柳(450978053) 12:55:11
但可见的肯定是从上往下盖住的第一个圆
|
代码:
/* ***********************************************
Author :rabbit
Created Time :2014/7/8 13:49:36
File Name :3.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-14
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0?1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
Point vecunit(Point a){
return a/Length(a);
}
Point Normal(Point a){
return Point(-a.y,a.x)/Length(a);
}
Point Rotate(Point a,double rad){
return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
Point u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
struct Line{
Point p,v;
double ang;
Line(){}
Line(Point _p,Point _v):p(_p),v(_v){
ang=atan2(v.y,v.x);
}
Point point(double a){
return p+(v*a);
}
bool operator < (const Line &L) const{
return ang<L.ang;
}
};
Point GetLineIntersection(Line a,Line b){
return GetLineIntersection(a.p,a.v,b.p,b.v);
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
Circle C[200];
bool vis[200];
vector<double> pp[200];
int GetCircleCircleIntersection(int s1,int s2){
Circle c1=C[s1],c2=C[s2];
double d=Length(c1.c-c2.c);
if(dcmp(d)==0){
if(dcmp(c1.r-c2.r)==0)return -1;
return 0;
}
if(dcmp(c1.r+c2.r-d)<0)return 0;
if(dcmp(fabs(c1.r-c2.r)-d)>0)return 0;
double a=angle(c2.c-c1.c);
double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
Point p1=c1.point(a-da),p2=c1.point(a+da);
if(p1==p2)return 1;
pp[s1].push_back(a+da);
pp[s1].push_back(a-da);
return 2;
}
bool PointInCircle(Point p, Circle C){
double dist = Length(p - C.c);
if(dcmp(dist - C.r) > 0) return 0;
else return 1;
}
bool CircleInCircle(Circle A, Circle B){
double cdist = Length(A.c - B.c);
double rdiff = B.r - A.r;
if(dcmp(A.r - B.r) <= 0 && dcmp(cdist - rdiff) <= 0) return 1;
return 0;
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
int n;
while(~scanf("%d",&n)&&n){
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)pp[i].clear();
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&C[i].c.x,&C[i].c.y,&C[i].r);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
if(i==j)continue;
GetCircleCircleIntersection(i,j);
}
for(int i=0;i<n;i++){
sort(pp[i].begin(),pp[i].end());
pp[i].resize(unique(pp[i].begin(),pp[i].end())-pp[i].begin());
}
for(int i=0;i<n;i++){
if(pp[i].size()==0){
bool ok=1;
for(int j=i+1;j<n;j++)
if(CircleInCircle(C[i],C[j])){
ok=0;break;
}
if(ok)vis[i]=1;
// cout<<"han->1"<<endl;
}
else{
// cout<<"han->2"<<endl;
int sz=pp[i].size();
pp[i].push_back(pp[i][0]);
for(int j=0;j<sz;j++){
Point dd=C[i].point((pp[i][j]+pp[i][j+1])/2);
bool ok=1;
for(int k=i+1;k<n;k++)
if(PointInCircle(dd,C[k])){
// cout<<dd.x<<" "<<dd.y<<" "<<k<<endl;
ok=0;break;
}
if(ok){
vis[i]=1;
for(int k=i-1;k>=0;k--)
if(PointInCircle(dd,C[k])){
vis[k]=1;break;
}
}
}
}
}
int ans=0;
// cout<<"han ";for(int i=0;i<n;i++)cout<<vis[i]<<" ";cout<<endl;
for(int i=0;i<n;i++)
if(vis[i])ans++;
cout<<ans<<endl;
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
POJ 1418 基本操作和圆 离散弧的更多相关文章
- POJ:2528(Mayor's posters)离散化成段更新+简单哈希
http://poj.org/problem?id=2528 Description The citizens of Bytetown, AB, could not stand that the ca ...
- [POJ] 3277 .City Horizon(离散+线段树)
来自这两篇博客的总结 http://blog.csdn.net/SunnyYoona/article/details/43938355 http://m.blog.csdn.net/blog/mr_z ...
- (中等) POJ 2528 Mayor's posters , 离散+线段树。
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj 1418 Viva Confetti
Viva Confetti Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1025 Accepted: 422 Desc ...
- poj 3675 Telescope (圆与多边形面积交)
3675 -- Telescope 再来一题.这题的代码还是继续完全不看模板重写的. 题意不解释了,反正就是一个单纯的圆与多边形的交面积. 这题的精度有点搞笑.我用比较高的精度来统计面积,居然wa了. ...
- POJ 1981 Circle and Points (扫描线)
[题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...
- Halcon 10.0:Sample 分割边缘拟合圆Circles.hdev
处理流程:快速二值化(区域)->获取区域边缘->截取边缘->膨胀边缘区域(定位)->定位区域进行边缘检测->边缘分割:线和圆->选择属性为圆的弧->拟合圆 * ...
- Canvas 画圆
原文地址:http://hi.baidu.com/lj2tj/item/557d8d1a65adfa721009b58b --------------------------------------- ...
- HDU4667(有错)
正规的做法是找切点.三角形三个顶点分别对圆作切线,然后求切点(2个).两圆之间也要求切点(4个). 扯淡了这就..麻烦的要命.. 下面是写了一半的代码.. void process_circle(po ...
随机推荐
- elementUI upload 对图片的宽高做校验
很开心今天中午没有吃饭!原因是一直没有解决掉一个小问题,于是一直试错,最后看了下源码才有了点头绪,历时四五个小时才解决掉,有点怀疑自己的能力了,所以写下此文,记录一下今天的囧况!一般情况下遇到问题,自 ...
- 芯片AMS1117 电源芯片
- 最短路算法详解(Dijkstra/SPFA/Floyd)
新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...
- android 登录和设置IP/端口功能
本人第一个Android开发功能:登录以及设置IP/端口. 本人是j2ee开发工程师,所以这个可能有一些处理不太完善的地方,欢迎评论在下面,我会认真改进的. 首先是配置strings.xml文件添加用 ...
- js面向对象的选项卡
前言: 选项卡在项目中经常用到,也经常写,今天在github突然看到一个面向对象的写法,值得收藏和学习. 本文内容摘自github上的 helloforrestworld/javascriptLab ...
- simple-word-Highlighter 支持网址正则表达式匹配
- UILabel基本用法
UILabel *_label = [[UILabel alloc]initWithFrame:CGRectMake(, self.view.frame.size.height*)]; _label. ...
- Android(Lollipop/5.0) Material Design(四) 创建列表和卡片
Material Design系列 Android(Lollipop/5.0)Material Design(一) 简单介绍 Android(Lollipop/5.0)Material Design( ...
- js进阶 12-8 如何知道上一个函数的返回值是什么(如何判断上一个函数是否执行成功)
js进阶 12-8 如何知道上一个函数的返回值是什么(如何判断上一个函数是否执行成功) 一.总结 一句话总结:event的result属性即可. 1.event的result属性的实际应用场景是什么? ...
- C++ 指针(不论什么一个指针本身的类型都是unsigned long int型)
1.指针数组: 即 数组的元素是指针型; 例:int*pa[2]; 明明是一维的指针数组.竟当作二维数组用. [cpp] view plain copy //利用指针数组存放单位矩阵 #include ...