POJ 1418 基本操作和圆 离散弧
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 761 | Accepted: 319 |
Description
A handful of various sized confetti have been dropped on a table. Given their positions and sizes, can you tell us how many of them you can see?
The following figure represents the disc configuration for the first sample input, where the bottom disc is still visible.

Input
n
x1 y1 r1
x2 y2 r2
...
xn yn rn
The first line in a configuration is the number of discs in the configuration (a positive integer not more than 100), followed by one line descriptions of each disc : coordinates of its center and radius, expressed as real numbers in decimal notation, with
up to 12 digits after the decimal point. The imprecision margin is +/- 5 x 10^(-13). That is, it is guaranteed that variations of less than +/- 5 x 10^(-13) on input values do not change which discs are visible. Coordinates of all points contained in discs
are between -10 and 10.
Confetti are listed in their stacking order, x1 y1 r1 being the bottom one and xn yn rn the top one. You are observing from the top.
The end of the input is marked by a zero on a single line.
Output
Sample Input
3
0 0 0.5
-0.9 0 1.00000000001
0.9 0 1.00000000001
5
0 1 0.5
1 1 1.00000000001
0 2 1.00000000001
-1 1 1.00000000001
0 -0.00001 1.00000000001
5
0 1 0.5
1 1 1.00000000001
0 2 1.00000000001
-1 1 1.00000000001
0 0 1.00000000001
2
0 0 1.0000001
0 0 1
2
0 0 1
0.00000001 0 1
0
Sample Output
3
5
4
2
2
给定一堆圆,求可见的圆有几个。
问别人的思路;
|
把圆弧离散化出来。
|
|
伏特跳蚤国王(497446970) 12:49:02
然后计算能看见的圆弧
|
|
Sd.无心插柳(450978053) 12:49:02
假设一个圆有条圆弧,没有被它之上的圆盖住,那肯定是可见的
|
|
Sd.无心插柳(450978053) 12:49:11
但另一种可能
|
|
Sd.无心插柳(450978053) 12:49:35
|
|
Sd.无心插柳(450978053) 12:50:34
事实上就是某条可见的圆弧盖住的圆
|
|
Sd.无心插柳(450978053) 12:50:38
也是可见的
|
|
rabbit(1337207267) 12:54:20
是不是一条可见的圆弧仅仅能盖住一个圆。
|
|
Sd.无心插柳(450978053) 12:54:55
不是
|
|
Sd.无心插柳(450978053) 12:55:11
但可见的肯定是从上往下盖住的第一个圆
|
代码:
/* ***********************************************
Author :rabbit
Created Time :2014/7/8 13:49:36
File Name :3.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-14
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0?1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
Point vecunit(Point a){
return a/Length(a);
}
Point Normal(Point a){
return Point(-a.y,a.x)/Length(a);
}
Point Rotate(Point a,double rad){
return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
Point u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
struct Line{
Point p,v;
double ang;
Line(){}
Line(Point _p,Point _v):p(_p),v(_v){
ang=atan2(v.y,v.x);
}
Point point(double a){
return p+(v*a);
}
bool operator < (const Line &L) const{
return ang<L.ang;
}
};
Point GetLineIntersection(Line a,Line b){
return GetLineIntersection(a.p,a.v,b.p,b.v);
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
Circle C[200];
bool vis[200];
vector<double> pp[200];
int GetCircleCircleIntersection(int s1,int s2){
Circle c1=C[s1],c2=C[s2];
double d=Length(c1.c-c2.c);
if(dcmp(d)==0){
if(dcmp(c1.r-c2.r)==0)return -1;
return 0;
}
if(dcmp(c1.r+c2.r-d)<0)return 0;
if(dcmp(fabs(c1.r-c2.r)-d)>0)return 0;
double a=angle(c2.c-c1.c);
double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
Point p1=c1.point(a-da),p2=c1.point(a+da);
if(p1==p2)return 1;
pp[s1].push_back(a+da);
pp[s1].push_back(a-da);
return 2;
}
bool PointInCircle(Point p, Circle C){
double dist = Length(p - C.c);
if(dcmp(dist - C.r) > 0) return 0;
else return 1;
}
bool CircleInCircle(Circle A, Circle B){
double cdist = Length(A.c - B.c);
double rdiff = B.r - A.r;
if(dcmp(A.r - B.r) <= 0 && dcmp(cdist - rdiff) <= 0) return 1;
return 0;
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
int n;
while(~scanf("%d",&n)&&n){
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)pp[i].clear();
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&C[i].c.x,&C[i].c.y,&C[i].r);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
if(i==j)continue;
GetCircleCircleIntersection(i,j);
}
for(int i=0;i<n;i++){
sort(pp[i].begin(),pp[i].end());
pp[i].resize(unique(pp[i].begin(),pp[i].end())-pp[i].begin());
}
for(int i=0;i<n;i++){
if(pp[i].size()==0){
bool ok=1;
for(int j=i+1;j<n;j++)
if(CircleInCircle(C[i],C[j])){
ok=0;break;
}
if(ok)vis[i]=1;
// cout<<"han->1"<<endl;
}
else{
// cout<<"han->2"<<endl;
int sz=pp[i].size();
pp[i].push_back(pp[i][0]);
for(int j=0;j<sz;j++){
Point dd=C[i].point((pp[i][j]+pp[i][j+1])/2);
bool ok=1;
for(int k=i+1;k<n;k++)
if(PointInCircle(dd,C[k])){
// cout<<dd.x<<" "<<dd.y<<" "<<k<<endl;
ok=0;break;
}
if(ok){
vis[i]=1;
for(int k=i-1;k>=0;k--)
if(PointInCircle(dd,C[k])){
vis[k]=1;break;
}
}
}
}
}
int ans=0;
// cout<<"han ";for(int i=0;i<n;i++)cout<<vis[i]<<" ";cout<<endl;
for(int i=0;i<n;i++)
if(vis[i])ans++;
cout<<ans<<endl;
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
POJ 1418 基本操作和圆 离散弧的更多相关文章
- POJ:2528(Mayor's posters)离散化成段更新+简单哈希
http://poj.org/problem?id=2528 Description The citizens of Bytetown, AB, could not stand that the ca ...
- [POJ] 3277 .City Horizon(离散+线段树)
来自这两篇博客的总结 http://blog.csdn.net/SunnyYoona/article/details/43938355 http://m.blog.csdn.net/blog/mr_z ...
- (中等) POJ 2528 Mayor's posters , 离散+线段树。
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj 1418 Viva Confetti
Viva Confetti Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1025 Accepted: 422 Desc ...
- poj 3675 Telescope (圆与多边形面积交)
3675 -- Telescope 再来一题.这题的代码还是继续完全不看模板重写的. 题意不解释了,反正就是一个单纯的圆与多边形的交面积. 这题的精度有点搞笑.我用比较高的精度来统计面积,居然wa了. ...
- POJ 1981 Circle and Points (扫描线)
[题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...
- Halcon 10.0:Sample 分割边缘拟合圆Circles.hdev
处理流程:快速二值化(区域)->获取区域边缘->截取边缘->膨胀边缘区域(定位)->定位区域进行边缘检测->边缘分割:线和圆->选择属性为圆的弧->拟合圆 * ...
- Canvas 画圆
原文地址:http://hi.baidu.com/lj2tj/item/557d8d1a65adfa721009b58b --------------------------------------- ...
- HDU4667(有错)
正规的做法是找切点.三角形三个顶点分别对圆作切线,然后求切点(2个).两圆之间也要求切点(4个). 扯淡了这就..麻烦的要命.. 下面是写了一半的代码.. void process_circle(po ...
随机推荐
- Altium Designer如何统一改变pcb状态下的原件标号位置
原创 我用的是Altium Designer16版本 变成 步骤如下: 选中标号 右击 下边一步很重要: 点击应用和确定 在之后弹出的对话框中选则你要改变的位置,我这里是把标号改变到原件的右侧: 等待 ...
- 想在子线程里面触发的信号的槽函数在子线程执行,信号槽连接必须使用DirectConnection 方式(即使跨线程,也可以强迫DirectConnection,而不能是AutoConnection)
Qt多线程的实现 1.继承QThread,重新run 2.继承Object,调用moveToThread方法 两种方法各有利弊:主要参考:http://blog.51cto.com/9291927/1 ...
- 对Linux下常用头文件总结
asm.current.h 定义全局项current ,其指向结构体struct task_struct linux/sched.h 定义结构体task_struct ,只要包含此头文件 ...
- 每日技术总结:Better-scroll应用于弹出层内容滚动
一.Better-scroll在项目中的应用 Better-scroll这款滚动插件还是很好用的,通常不会有什么问题.但偶尔总会出点意外.今天再次使用better-scroll,记录一下这次顺利的过程 ...
- 【AtCoder ABC 075 D】Axis-Parallel Rectangle
[链接] 我是链接,点我呀:) [题意] 让你找到一个各边和坐标轴平行的矩形.使得这个矩形包含至少K个点. 且这个矩形的面积最小. [题解] 把所有的"关键点""都找出来 ...
- 度量空间(metric space)
一个度量空间(metric space)由一个有序对(ordered pair)(M,d) 表示,其中 M 是一种集合,d 是定义在 M 上的一种度量,是如下的一种函数映射: d:M×M→R 且对于任 ...
- SIP对话、事务详解
1,SIP对话的建立(图片来自于网络) SIP对话的建立包括invite request,response,ACK.其中response包含临时响应(1XX response)和最终响应(非1XX r ...
- Html表单使用实例
原文 https://www.jianshu.com/p/b01f32844ac1 大纲 1.单选框多选框实现的商品选择 2.添加下拉框和删除下拉框 3.观察textarea中事件处理器的运行顺序 推 ...
- [转载]Ocelot简易教程(五)之集成IdentityServer认证以及授权
作者:依乐祝 原文地址:https://www.cnblogs.com/yilezhu/p/9807125.html 最近比较懒,所以隔了N天才来继续更新第五篇Ocelot简易教程,本篇教程会先简单介 ...
- Ubuntu12.04LTS SDK无法更新
1.打开终端输入sudo gedit /etc/hosts 加入下面 2.加入下列文字到文件里: 203.208.46.146 dl.google.com 203.208.46 ...