HDU 6217 BBP Formula (数学)
题目链接: HDU 7217
题意:
题目给你可以计算 \(π\) 的公式:
\(\pi = \sum_{k=0}^{\infty}[\frac{1}{16^k}(\frac{4}{8k+1})-(\frac{2}{8k+4})-(\frac{1}{8k+5})-(\frac{1}{8k+6})]\)
告诉你可以求十六进制下的小数点后 \(π\) 的第 \(n\) 位,而不用计算前 \(n-1\) 项。
十六进制表示下,问你 \(π\) 的小数点后的第 \(n\) 位是多少 $ (1 ≤ n ≤ 100000)$ 。
Paper链接:
BBP Paper http://www.experimentalmath.info/bbp-codes/bbp-alg.pdf
简要题解:
其实看上面的 \(Paper\) 就知道怎么做了。
我简单解析一下。
把公式的第一项拿出来分析:
\(\sum_{k=0}^{\infty}\frac{1}{16^k}(\frac{4}{8k+1}) = \sum_{k=0}^{\infty}(\frac{4}{16^k(8k+1)}) = \sum_{k=0}^{\infty}(\frac{1}{16^k(8k+1)})\).
把公式拆分:
\(\sum_{k=0}^{\infty}(\frac{1}{16^k(8k+1)}) = \sum_{k=0}^{\infty}(\frac{1}{16^k(8k+1)}) = \sum_{k=0}^{n}(\frac{1}{16^k(8k+1)}) + \sum_{k=n + 1}^{\infty}(\frac{1}{16^k(8k+1)})\).
拆分之后我们就可以得到第 \(n\) 位。
将式子乘上 \(16^n\) ,使得小数点往后移动 \(n\) 位。
\([\sum_{k=0}^{n}(\frac{1}{16^k(8k+1)}) + \sum_{k=n + 1}^{\infty}(\frac{1}{16^k(8k+1)})]*16^{n}==> \sum_{k=0}^{n}(\frac{16^{n-k}}{(8k+1)}) + \sum_{k=n + 1}^{\infty}(\frac{16^{n-k}}{(8k+1)})\).
前一项 \(\sum_{k=0}^{n}(\frac{16^{n-k}}{(8k+1)})\) 为了避免高精度,可以化成 \(\sum_{k=0}^{n}(\frac{16^{n-k} mod (8k+1)}{(8k+1)})\).
后一项 \(\sum_{k=n + 1}^{\infty}(\frac{16^{n-k}}{(8k+1)})\) 就不用简化了,将 \(\infty\) 取够一定范围就可以了。
令 \(S_1 = \sum_{k=0}^{n}(\frac{16^{n-k}}{(8k+1)}) + \sum_{k=n + 1}^{\infty}(\frac{16^{n-k}}{(8k+1)})\).
那么,答案就是 \(4S_1 - 2S_2 - S_3 - S_4\)的小数部分。因为得到的只是小数部分,所以再乘以 \(16\) 后,得到的整数部分转化成十六进制就可以啦。
时间复杂度:\(O(nlogn)\)
所以,我是不是可以出一道关于计算二进制表示下的 \(log2\) 的题 ???
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
char print(int x)
{
if(x>=0 && x<=9)return x + '0';
return x+55;
}
ll qpower(ll a, ll b, ll mod)
{
ll res = 1;
while(b)
{
if(b & 1) res = a * res % mod;
b >>= 1;
a = a * a % mod;
}
return res;
}
double bbp(int n,ll k,ll b)
{
double res = 0;
for(int i=0;i<=n;i++)
{
res += (qpower(16,n-i,8*i+b) * 1.0/(8*i+b));
}
for(int i = n + 1;i <= n + 1000 + 1;i++)
{
res += (powf(16,n-i)* 1.0/(8*i+b));
}
return k * res;
}
int main()
{
int t,n;
cin>>t;
int cas = 1;
while(t--)
{
double ans = 0;
cin>>n;
n--;
ans = bbp(n,4,1) - bbp(n,2,4) - bbp(n,1,5) - bbp(n,1,6);
// cout<<"ans="<<ans<<endl;
ans = ans - (int)ans;
if(ans<0)ans+=1;
ans*=16;
char c ;
c = print(ans);
printf("Case #%d: %d %c\n",cas++,n+1,c);
}
return 0;
}
HDU 6217 BBP Formula (数学)的更多相关文章
- hdu 6217 A BBP Formula 公式题
题意 已知公式:$\pi=\sum_{k=0}^{\infty}\left[\frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1} ...
- HDU 4342History repeat itself 数学
C - History repeat itself Time Limit:1000MS Memory Limit:32768KB Description Tom took the D ...
- HDU 4816 Bathysphere(数学)(2013 Asia Regional Changchun)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4816 Problem Description The Bathysphere is a spheric ...
- HDU 5584 LCM Walk 数学
LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...
- HDU 4336 Card Collector 数学期望(容斥原理)
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意简单,直接用容斥原理即可 AC代码: #include <iostream> ...
- HDU 5570 balls 期望 数学
balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5570 De ...
- hdu 4710 Balls Rearrangement (数学思维)
意甲冠军:那是, 从数0-n小球进入相应的i%a箱号.然后买一个新的盒子. 今天的总合伙人b一个盒子,Bob试图把球i%b箱号. 求复位的最小成本. 每次移动的花费为y - x ,即移动前后盒子编号 ...
- HDU 4790 Just Random 数学
链接:pid=4790">http://acm.hdu.edu.cn/showproblem.php?pid=4790 意:从[a.b]中随机找出一个数字x,从[c.d]中随机找出一个 ...
- HDU 1018-Big Number(数学)
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
随机推荐
- C# async/await异步编程深入理解
异步函数简介 一般指 async 修饰符声明得.可包含await表达式得方法或匿名函数. 声明方式 异步方法的声明语法与其他方法完全一样, 只是需要包含 async 关键字.async可以出现在返回值 ...
- [UnityUI]循环滑动列表
效果图: 使用的是UGUI和DOTween 当中比較关键的是循环滑动和层次排序: 1.循环滑动:这里先如果显示五张图片.分别标记为0,1,2,3,4,那么当向左滑动时,序列就变为1,2,3,4,0,这 ...
- 动态规划 LCS,LIS
1.最大连续子序列 dp[i]=max(dp[i-1]+a[i],a[i]) 以i为结尾 2.最大不连续子序列 dp[i]=max(dp[j]+a[i],dp[j]) 3.最大连续递增子序列 if a ...
- jquery14 on() trigger() : 事件操作的相关方法
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- ErrorSet
1.获取路径的失误: 例子是对一个列表项的悬浮操作: ~(function() { var lists = $(".footer_log>li"); lists.each(f ...
- pycharm不显示工具栏,自动导入模块,格式化代码快捷键
我们需修改View里面的Toolbar,在前面打上沟,然后就可以显示了 自动导入模块设置:import numpy as np 我们需用鼠标选中numpy,然后在键盘上同时按住Alt+Enter键,通 ...
- HDFS简单介绍及用C语言訪问HDFS接口操作实践
一.概述 近年来,大数据技术如火如荼,怎样存储海量数据也成了当今的热点和难点问题,而HDFS分布式文件系统作为Hadoop项目的分布式存储基础,也为HBASE提供数据持久化功能,它在大数据项目中有很广 ...
- 跟着鬼哥学so改动,三,作业篇
作业: 通过前面两篇文章的学习.请自行分析此应用,将当前用户类型改动为Gold Vip 用户. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZ3VpZ3V ...
- js14--原型2
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...
- BZOJ2244: [SDOI2011]拦截导弹(CDQ分治,二维LIS,计数)
Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高 ...