Description:  

A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast,[1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Examples:

Input: [1,7,4,9,2,5]
Output: 6
The entire sequence is a wiggle sequence. Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. Input: [1,2,3,4,5,6,7,8,9]
Output: 2

  I got this problem by mocking which was given 40 mins. However failed,  WTF! At the begining, I concluded it was an dp problem. I was stuck in how to solve it in one loop n(O(n) timespace). then I try to figure out the trans-fomula:

dp[i][] = max(dp[k][] + , dp[i][]);
dp[i][] = max(dp[k][] + , dp[i][]);
dp[i][] represent the longest wanted subsequence with a positive sum ending;
dp[i][] similarly but with a negative sum ending;

  You must solve it in time which may sacrifice the timespace!

class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
const int n = nums.size();
if(n == ) return ;
int dp[n][];
for(int i = ; i < n; i ++){
dp[i][] = dp[i][] = ;
}int ans = ;
for(int i = ; i < n; i ++){
for(int k = ; k < i; k ++){
if(nums[i] > nums[k]){
dp[i][] = max(dp[i][], dp[k][] + );
}else if(nums[i] < nums[k]){
dp[i][] = max(dp[i][], dp[k][] + );
}
}
ans = max(dp[i][], dp[i][]);
}
return ans + ;
}
};

  Finally, I optimize the solution to O(n).

class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
const int n = nums.size();
if(n == ) return ;
int dp[n][];
//dp[i][0] : Before i the longest wanted subsequence ending with a positive ending.
//dp[i][1] : Before i the longest wanted subsequence ending with a negative ending.
dp[][] = dp[][] = ;
for(int i = ; i < n; i ++){
if(nums[i] > nums[i - ]){
dp[i][] = dp[i - ][] + ;
dp[i][] = dp[i - ][];
}else if(nums[i] < nums[i -]){
dp[i][] = dp[i - ][] + ;
dp[i][] = dp[i - ][];
}else{
dp[i][] = dp[i - ][];
dp[i][] = dp[i - ][];
}
}
return max(dp[n - ][], dp[n - ][]);
}
};

【Leetcode】376. Wiggle Subsequence的更多相关文章

  1. 【LeetCode】376. Wiggle Subsequence 解题报告(Python)

    [LeetCode]376. Wiggle Subsequence 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.c ...

  2. 【LeetCode】392. Is Subsequence 解题报告(Python)

    [LeetCode]392. Is Subsequence 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/problems/is-subseq ...

  3. 【leetcode】1081. Smallest Subsequence of Distinct Characters

    题目如下: Return the lexicographically smallest subsequence of text that contains all the distinct chara ...

  4. 【LeetCode】Increasing Triplet Subsequence(334)

    1. Description Given an unsorted array return whether an increasing subsequence of length 3 exists o ...

  5. 【leetcode】Increasing Triplet Subsequence

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  6. 【leetcode】280.Wiggle Sort

    原题 Given an unsorted array nums, reorder it in-place such that nums[0] <= nums[1] >= nums[2] & ...

  7. 【LeetCode】280. Wiggle Sort 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 排序后交换相邻元素 日期 题目地址:https://l ...

  8. 【LeetCode】873. Length of Longest Fibonacci Subsequence 解题报告(Python)

    [LeetCode]873. Length of Longest Fibonacci Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: ...

  9. 【LeetCode】522. Longest Uncommon Subsequence II 解题报告(Python)

    [LeetCode]522. Longest Uncommon Subsequence II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemin ...

随机推荐

  1. Linux cat 命令

    cat命令是linux下的一个文本输出命令,通常是用于观看某个文件的内容的:cat主要有三大功能:1.一次显示整个文件.$ cat   filename2.从键盘创建一个文件.$ cat  >  ...

  2. kvm virt-install 使用小结

    简介: virt-install 能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装. 此外,它能够基于串行控制台.VNC或SDL支持文本或图 ...

  3. swift--调用系统单例实现打电话

    //自动打开拨号页面并自动拨打电话 var phone="15974462468"; UIApplication.sharedApplication().openURL(NSURL ...

  4. P2639 [USACO09OCT]Bessie的体重问题 【背包问题】

    题目描述 Bessie像她的诸多姊妹一样,因为从Farmer John的草地吃了太多美味的草而长出了太多的赘肉.所以FJ将她置于一个及其严格的节食计划之中.她每天不能吃多过H (5 <= H & ...

  5. 9.boost权重控制

    主要知识点: 学会在should中使用boost进行权重控制     假如现在有一个需求:要把should中某些字段优先显示, 1.不加boost权重控制 GET /forum/article/_se ...

  6. Linux - redis发布|订阅

    目录 Linux - redis发布|订阅 发布|订阅 基本命令 发布和订阅实例 正则方式订阅一个或者多个符合模式的频道 Linux - redis发布|订阅 发布: publish 订阅: subs ...

  7. BZOJ 1606 USACO 2008 Dec. 购买干草

    [题意概述] 有n件物品,每件物品有体积Vi,背包容量为C,问最多可以装多少体积的物品 [题解] 显然是个无限背包嘛.. 直接做背包DP就好 注意无限背包的写法和01背包的区别 #include< ...

  8. Vue中数据的处理

    临时变量参数的存储 1.引用类型和值类型的差异,及存储 2.在项目中做的绑定值,首先v-model 存储到临时变量,同时把数据在提交到api之前,需要做处理,因为是引用类型的数据,在处理之前,会修改掉 ...

  9. Beetl学习总结(3)——高级功能

    3.1. 配置GroupTemplate Beetl建议通过配置文件配置配置GroupTemplate,主要考虑到未来可能IDE插件会支持Beetl模板,模板的属性,和函数等如果能通过配置文件获取,将 ...

  10. R语言 PCA

    1.关键点 综述:主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据降维处理的从数据中提取某些公共部分,然后对这些公共部分进行分析和处理. #主成分分析 是将多指标化为少数几个综合指 ...