两遍dfs,第一遍有点像找重链,第二遍维护答案,每个点维护一个当前深度,然后就没啥了。

ps:memset(lst,-1,sizeof(lst));这一句多余的话让我debug半天。。。

题干:

Description
  小Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数
字1,,….进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅
存在一条通路(通路指连接两个元件的导线序列)。在电路板上存在一个特殊的元件称为“激发器”。当激发器工
作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将
该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”——接收激励
电流之后不再转发的节点。激励电流在导线上的传播是需要花费时间的,对于每条边e,激励电流通过它需要的时
间为te,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时
得到激励电路——即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目
前小Q有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用
多少次道具才可使得所有的“终止节点”时态同步?
Input
  第一行包含一个正整数N,表示电路板中节点的个数。第二行包含一个整数S,为该电路板的激发器的编号。接
下来N-1行,每行三个整数a , b , t。表示该条导线连接节点a与节点b,且激励电流通过这条导线需要t个单位时

Output   仅包含一个整数V,为小Q最少使用的道具次数
Sample Input Sample Output HINT
N ≤ ,te ≤
Source

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
struct node
{
int r,nxt;
ll w;
}a[];
int len = ,lst[],n,s;
ll dep[];
void add(int x,int y,ll w)
{
a[++len].r = y;
a[len].w = w;
a[len].nxt = lst[x];
lst[x] = len;
}
ll sum = ;
ll dfs(int x,int f)
{
for(int k = lst[x];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == f)
continue;
dfs(y,x);
dep[x] = max(dep[x],dep[y] + a[k].w);
}
for(int k = lst[x];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == f)
continue;
sum += dep[x] - dep[y] - a[k].w;
}
return dep[x];
}
int main()
{
read(n);read(s);
// memset(lst,-1,sizeof(lst)); 就是这一句!!!
duke(i,,n - )
{
int x,y;
ll z;
read(x);read(y);read(z);
add(x,y,z);
add(y,x,z);
}
dfs(s,s);
printf("%lld\n",sum);
return ;
}

B1060 [ZJOI2007]时态同步 dfs的更多相关文章

  1. Luogu P1131 [ZJOI2007]时态同步(dfs)

    P1131 [ZJOI2007]时态同步 题意 题目描述 小\(Q\)在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字\(1,2,3,\dots\).进行 ...

  2. 【BZOJ1060】[ZJOI2007]时态同步 树形DP

    [BZOJ1060][ZJOI2007]时态同步 Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路 ...

  3. BZOJ 1060: [ZJOI2007]时态同步( 树形dp )

    坑爹...数据是错的..详见discuss  http://www.lydsy.com/JudgeOnline/wttl/wttl.php?pid=1060 先求根到叶子的距离最大值x, 然后把所有叶 ...

  4. bzoj千题计划163:bzoj1060: [ZJOI2007]时态同步

    http://www.lydsy.com/JudgeOnline/problem.php?id=1060 以激发器所在节点为根 终止节点一定是叶节点 记录点的子树内最深的终止节点 然后从根往下使用道具 ...

  5. P1131 [ZJOI2007]时态同步(树形dp)

    P1131 [ZJOI2007]时态同步 设$f[i]$为与$i$与最远的点的距离 在dfs时每次更新的时候顺便统计一下长度,不同的话就改成最长的那条并更新答案 #include<iostrea ...

  6. 【BZOJ 1060】 1060: [ZJOI2007]时态同步 (树形DP)

    1060: [ZJOI2007]时态同步 Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数 字1,2,3….进行标号.电路板的各 ...

  7. 洛谷 P1131 [ZJOI2007]时态同步

    P1131 [ZJOI2007]时态同步   题目描述 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3….进行标号.电路板的各个节点由若干 ...

  8. [ZJOI2007]时态同步(dfs+贪心)

    小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3.进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅 ...

  9. 【bzoj1060】[ZJOI2007]时态同步

    题目描述 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点 ...

随机推荐

  1. #2028 Lowest Common Multiple Plus

    http://acm.hdu.edu.cn/showproblem.php?pid=2028 应该是比较简单的一道题啊...求输入的数的最小公倍数. 先用百度来的(老师教的已经不知道跑哪去了)辗转相除 ...

  2. nginx-配置反向代理实例

    nginx反向代理配置及优化 2009-05-26 作者:守住每一天blog:liuyu.blog.51cto.combbs:bbs.linuxtone.orgmsn:liuyubj520#hotma ...

  3. day03-执行python方式、变量及数据类型简介

    目录 执行Python程序的两种方式 1. 第一种:交互式 2. 第二种:命令式 3. Python执行程序的三个阶段 变量 变量 什么是变量 Python中的变量 变量名的命名规范 内存管理 定义变 ...

  4. .net 内嵌 GeckoWebBrowser (firefox) 核心浏览器

    引用nuget包: 注意:Geckofx45 nuget包必须是最后引用,否则初始化会出错 简单示例: using Gecko; using System; using System.Collecti ...

  5. 最适合初学者的Linux运维学习教程2018版

    Linux运维工程师是一个新颖岗位,现在非常吃香,目前从行业的角度分析,随着国内软件行业不断发展壮大,越来越多复杂系统应运而生,为了保证系统稳定运行,必须要有足够多的Linux运维工程师.维护是软件生 ...

  6. C++入职学习篇--新员工入职(持续更新)

    C++入职学习篇--新员工入职(持续更新) 本人菜鸟一枚,刚刚结束学业生涯,入职C++软件开发岗位,之前对C++一窍不通,刚刚入职,亚历山大,但为祖国和平发展,本人励志为中华崛起而奋斗,学不好C++誓 ...

  7. Flask - WTF和WTForms创建表单

    目录 Flask - WTF和WTForms创建表单 一. Flask-WTF 1.创建基础表单 2.CSRF保护 3.验证表单 4.文件上传 5.验证码 二. WTForms 1. field字段 ...

  8. CA认证相关

    目录 CA认证相关 基本概念 CA认证相关 公钥私钥详解>> 基本概念 密钥对: 在非对称的加密技术中心, 有两种密钥, 分为私钥和公钥,私钥 --RSA算法-->公钥. 公钥: 公 ...

  9. hdu2003 求绝对值【C++】

    求绝对值 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  10. random随机库

    random库是用于产生并运用随机数的标准库 主要包含的有9个随机函数,分别是: seed(), random(), randint(), getrandbits(), randrange(), un ...