【2018.11.22】CTSC2018(模拟赛!)
太蠢了……$noip$ 后第一次模拟赛竟然是这样的……完全就是打击自信 / 降智……
1. 假面
一道神仙概率 $dp$!第一次写……
拿到题就发现血量 $m_i$ 的上限只有 $100$!
然后 $0$ 操作就可以用 $rate(i,j)$ 动态维护第 $i$ 个人血量为 $j$ 的概率啦。
$1$ 操作比较麻烦(但是它故意弄得很少)。
设 $live_i$ 和 $dead_i$ 分别为 $1$ 操作范围内的第 $i$ 个人活着和死了的概率,$g_{i,j}$ 是除 $i$ 以外有 $j$ 个人活着的概率。
第 $i$ 个人的答案就是 $live_i\times \sum_{j=0}^{k-1} \frac{1}{j+1}\times g_{i,j}$,其中 $\times \sum_{j=0}^{k-1}$ 是因为等概率攻击自己和其它 $j$ 个人(自己必定活着,因为自己的答案是命中自己的概率)。
但是 $g_{i,j}$ 怎么求?我们发现它的原型是这样一个 $dp$:设 $f_{i,j}$ 表示前 $i$ 个人有 $j$ 个活着的概率。
不难看出它是能递推出来的:$ f_{i,j} = f_{i-1,j-1} \times alive_i + f_{i-1,j} \times dead_i$
而且它最终转移出的总共 $k$ 个人的概率 与转移顺序无关,所以把当前求答案的这个人放到最后,然后不算他,推出的前 $k-1$ 个人的概率 $f_{k-1}$ 就是 $g_i$ 了。
每次最多有 $k$ 个人要求答案,套上述 $O(n^2)$ $dp$,时间复杂度是 $O(C\times n^3)$,能得 $70$ 分。
然后怎么优化?
$XJR$:我会 $FFT$!
不过他现场被卡成 $80$,事实证明 $200$ 个数的卷积算上常数 甚至比暴力还慢,$O(n^2\times log(n))$ 容易被卡成 $70$ 分。
$100$ 分就是(我)没弄过的一个操作了——倒推 $dp$。
什么意思?我们观察递推式 $ f_{i,j} = f_{i-1,j-1} \times alive_i + f_{i-1,j} \times dead_i$
它是可以简单反推的,即移项得到 $$f_{i-1, j} = \frac{f_{i, j} - f_{i -1, j - 1} \times live_i}{dead_i}$$
又因为答案与转移顺序无关,所以对于每个放到最后的要求答案的人,$f_{k-1}$ 可能会变,但 $f_k$ 一定不变。我们只需要从所有人的概率情况 $f_k$ 去掉当前求答案的人即可得到 $g_k$,而把这个人像上面一样放到第 $k$ 位时,由于上式可以从 $f_k$ 转移一次就得到 $f_{k-1}$,我们就可以一次求得 $g_i$。这样就不用像之前那样对于每个求答案的人重新从第 $1$ 到 $k-1$ 位递推一遍 $f$ 数组了(所以程序中的 $f$ 数组是一维的,最终存的是 $f_n$)。
$$f_{k-1, j} = \frac{f_{k, j} - f_{k -1, j - 1} \times live_k}{dead_k}$$
因为第 $k$ 个数是我们当前要求答案的第 $i$ 个人,所以 $live$ 和 $dead$ 的下标可以直接替换成 $i$,这样就省去了实际交换。
每次只是反推了一位,之前被各种博客无限误导为要整体反推一遍,然后无限瞎**理解,然后极其暴躁
2. 暴力写挂
我像是会边分治吗?
45pts:
$noip$ 难度,会写 欧拉序+RMQ 的 $O(1)$ 求 $lca$ 就行了。
100pts:
一个比较叼的线段树合并,作为一个初学者,别人的题解都好难看懂哦……杠了不少时间。
首先要知道这么一个不常用的计算链并长的方法:树上两点 $x,y$ 到根的链并长 = $[depth(x)+depth(y)+(depth(x)-depth(lca))+(depth(y)-depth(lca))] / 2$。
画个图就是

容易发现,四种颜色的边加起来之后,每条边都被算了两次,因此除以 $2$ 后每条边就只被算 $1$ 次了。
这里定义一个点 $x$ 的权值为 $depth(x)+(depth(x)-depth(lca))$。其中 $lca$ 会在之后枚举。
为什么要用这个?最后会提。
开始正题。
观察题目式子,发现前 $3$ 项是第一棵树上的,最后一项是第二棵树上的,好像不支持同时维护跨树的信息,所以我们枚举第二棵树的 $lca$。
也就是说,从第二棵树的根节点开始深搜遍历第二棵树。
那怎么解决第一棵子树?
我们注意到这样一个事情:一个点只对它的所有祖先节点有影响。
(这不是废话吗)
但正是这一点,让这个树上问题可以套个板子。
考虑一下不套板子的时候,直接做,怎么做?
如果我们固定了第一棵树的某个点为 $lca$,那我们只需要找这个点的所有子树中,子树中最大点权最大的两个,相加即可得到答案。
但我们只固定了第二棵树的 $lca$,所以我们可以反过来做,用第一个树中的点的权值更新其所有祖先节点。这样当之后祖先节点作为 $lca$ 时,只要取它被更新到的最大值和次大值,相加即可得到答案。
然而这样做复杂度并不对,因为树的深度一大,就有很多点有很多祖先节点,暴力更新的时间就炸了。
这时就可以套树分治板子了。我这用的是边分治(也可以用点分治做)。
众所周知,树分治就是通过重构树来让它尽量平衡一些,至少控制在 $log(n)$ 级别(二叉树)。然后我们就可以暴力枚举祖先什么的了。
而枚举第二棵树的 $lca$ 时,我们在之后对第一棵树做线段树合并时,只能枚举所有不能确定第一棵树的 $lca$
【2018.11.22】CTSC2018(模拟赛!)的更多相关文章
- 2018.9.22 NOIP模拟赛
*注意:这套题目应版权方要求,不得公示题面. 从这里开始 Problem A 妹子 Problem B 旅程 Problem C 老大 因为业务水平下滑太严重,去和高一考NOIP模拟,sad... P ...
- 2018.11.7 PION 模拟赛
期望:100 + 80 + 75 = 255 实际:0 + 80 + 60 = 140 唉~一天比一天犯的错误智障,感觉noip要凉啊... 吓得我赶紧吃几颗药补补脑子. 奶一下大佬: lgj AK ...
- 2018.11.6 PION 模拟赛
期望:100 + 40 + 50 = 190 实际:60 + 10 + 50 = 120 考得好炸啊!!T1数组开小了炸掉40,T2用 int 读入 long long ,int存储 long lon ...
- 2018.11.5 PION模拟赛
期望:30 + 40 + 50 = 120 实际:30 + 50 + 40 = 120 ‘’ 思路:最重要的是发现 是完全没有用的,然后这个题目就可以转成DP来做. /* 期望的分:30 */ #in ...
- 2018.11.3 PION模拟赛
期望:100 实际:100 #include<cstdio> #include<cstring> #include<iostream> #include< ...
- 2018 11.2 PION模拟赛
期望:100 + 50 + 30 = 180 实际:0 + 50 + 30 =80 期望:100 实际:0 数值有负数,边界应该设为-0x7f 此处 gg /* 期望的分:50+ */ ...
- 2018 11.1 PION 模拟赛
期望:250 100+100+50 实际:210 80+100+30 期望:100 实际:80 最后:两个点T了.可能是求逆元的方法太慢了,也可能是闲的又加了一个快速乘的原因. #inclu ...
- 11.7 NOIP模拟赛
目录 2018.11.7 NOIP模拟 A 序列sequence(two pointers) B 锁lock(思路) C 正方形square(埃氏筛) 考试代码 B C 2018.11.7 NOIP模 ...
- 11/1 NOIP 模拟赛
11.1 NOIP 模拟赛 期望得分:50:实际得分:50: 思路:暴力枚举 + 快速幂 #include <algorithm> #include <cstring> #in ...
随机推荐
- fluent_python2
字典和集合 泛映射类型, 继承自collections.abc, Mapping和MutableMapping 标准库里的所有映射类型都是利用 dict 来实现的,因此它们有个共同的限制,即只有可散列 ...
- 51nod 算法马拉松17 解题报告 以后不能赛中写题解(查逐梦者抄袭本人代码...
B题(数学题: 问(1+sqrt(2)) ^n 能否分解成 sqrt(m) +sqrt(m-1)的形式 如果可以 输出 m%1e9+7 否则 输出no n<=1e18 刚看题没思路 暴力一下 ...
- 关于用终端运行php来测试推送的问题
照网上的方法,合并好了证书的pem,密码也是对的,然后也写好了推送用的php文件,在终端里php这个文件,报错报错内容是:Warning: stream_socket_client(): SSL op ...
- 实验3 分支&循环语句(1)
part 1 1.在循环中使用控制语句continue和break,其功能区别是: continue:只控制本次循环的结束. break:终止并跳出循环,之后的循环也不再执行. 2.在两层嵌套循环中 ...
- CPP-基础:strcpy之于C++(
以下对strcpy函数错误的是? char atr1[]="string"; ]; char *str3; char *str4="sting"; A.strc ...
- BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)
题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...
- A*和IDA*介绍
\(A*\)算法是一种很神奇的搜索方法,它属于启发式搜索中的一种.A*最主要的功能当然就是用来剪枝,提高搜索的效率.A*主要的实现方法是通过一个估价函数,每次对下一步进行一个估价,根据估价出的值来决定 ...
- 业务系统中最核心的状态设计,异常 case. (系统设计)
系统设计几方面 1. 具象: 几个角色 -- 用例 2. 具象: 边界模块 3. 具象: 实体模块 4. 抽象: 详细设计后,抽出公用的部分. 5. Status状态字段的设置和更改 系统设计中最核心 ...
- shell脚本,计算1+3+5....100等于多少?
[root@localhost wyb]# cat unevenjia.sh #!/bin/bash #从1+++...100的结果 i= count=$1 $count` do sum=$(($su ...
- 微信小程序canvas实现圆形计时器功能
index.js import Canvas from '../../utils/canvas.js'Page({ ...Canvas.options, /** * 页面的初始数据 */ data: ...