1. 简单介绍

reduce side  join是全部join中用时最长的一种join,可是这样的方法可以适用内连接、left外连接、right外连接、full外连接和反连接等全部的join方式。reduce side
 join不仅能够对小数据进行join,也能够对大数据进行join,可是大数据会占用大量的集群内部网络IO,由于全部数据终于要写入到reduce端进行join。

假设要做join的数据量很大的话。就不得不用reduce join了。


2. 适用场景
-join的两部分数据量很大;
-想要通过一种模式灵活的适用多种join。

3.Reduce side  join的架构


3.1 map 阶段
map 阶段首先从数据中提取出join的foreign key作为map输出的key,然后将输入的记录所有作为输出value。输出的value须要依据输入的数据集打上数据集的标签,比方在value的开头加上‘A’‘B’的标签。

3.2 reduce阶段
reduce端对具有相同foreign key的数据进行处理,对具有标签'A'和'B'的数据进行迭代处理,下面分别用伪代码对不同的join的处理进行说明。
-内连接:假设带有标签‘A’和‘B’的数据都存在,遍历并连接这些数据,然后输出
if (!listA.isEmpty() && !listB.isEmpty()) {
for (Text A : listA) {
for (Text B : listB) {
context.write(A, B);
}
}
}
-左外连接:右边的数据假设存在就与左边连接,否则将右边的字段都赋null。仅仅输出左边
// For each entry in A,
for (Text A : listA) {
// If list B is not empty, join A and B
if (!listB.isEmpty()) {
for (Text B : listB) {
context.write(A, B);
}
} else {
// Else, output A by itself
context.write(A, EMPTY_TEXT);
}
}

-右外连接:与左外连接类似。左边为空就将左边赋值null,仅仅输出右边
// For each entry in B,
for (Text B : listB) {
// If list A is not empty, join A and B
if (!listA.isEmpty()) {
for (Text A : listA) {
context.write(A, B);
}
} else {
// Else, output B by itself
context.write(EMPTY_TEXT, B);
}
}

-全外连接:这个要相对复杂点,首先输出A和B都不为空的。然后输出某一边为空的
// If list A is not empty
if (!listA.isEmpty()) {
// For each entry in A
for (Text A : listA) {
// If list B is not empty, join A with B
if (!listB.isEmpty()) {
for (Text B : listB) {
context.write(A, B);
}
} else {
// Else, output A by itself
context.write(A, EMPTY_TEXT);
}
}
} else {
// If list A is empty, just output B
for (Text B : listB) {
context.write(EMPTY_TEXT, B);
}
}

-反连接:输出A和B没有共同foreign key的值
// If list A is empty and B is empty or vice versa
if (listA.isEmpty() ^ listB.isEmpty()) {
// Iterate both A and B with null values
// The previous XOR check will make sure exactly one of
// these lists is empty and therefore the list will be skipped
for (Text A : listA) {
context.write(A, EMPTY_TEXT);
}
for (Text B : listB) {
context.write(EMPTY_TEXT, B);
}
}

4.实例
以下举一个简单的样例,要求可以用reduce side join方式实现以上全部的join。


4.1数据
User 表
---------------------------
username cityid
--------------------------
Li lei, 1
Xiao hong, 2
Lily, 3
Lucy, 3
Daive, 4
Jake, 5
Xiao Ming, 6

City表
---------------------------
cityid cityname
--------------------------
1, Shanghai
2, Beijing
3, Jinan
4, Guangzhou
7, Wuhan
8, Shenzhen

4.2 代码介绍
写两个mapper,一个mapper处理user数据,一个mapper处理city数据。在主函数中调用时用MultipleInputs类加入数据路径,并分别指派两个处理的Mapper。
往configuration中加入參数“join.type”,传给reducer,决定在reduce端採用什么样的join。
具体代码例如以下:
package com.study.hadoop.mapreduce;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class ReduceJoin { //user map
public static class UserJoinMapper extends Mapper<Object, Text, Text, Text>{
private Text outKey = new Text();
private Text outValue = new Text();
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
String line = value.toString();
String[] items = line.split(","); outKey.set(items[1]);
outValue.set("A"+items[0]);
context.write(outKey, outValue);
}
}
//city map
public static class CityJoinMapper extends Mapper<Object, Text, Text, Text>{
// TODO Auto-generated constructor stub
private Text outKey = new Text();
private Text outValue = new Text();
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
String line = value.toString();
String[] items = line.split(","); outKey.set(items[0]);
outValue.set("B"+items[1]);
context.write(outKey, outValue);
} }
public static class JoinReducer extends Reducer<Text, Text, Text, Text>{
// TODO Auto-generated constructor stub
//Join type:{inner,leftOuter,rightOuter,fullOuter,anti}
private String joinType = null;
private static final Text EMPTY_VALUE = new Text("");
private List<Text> listA = new ArrayList<Text>();
private List<Text> listB = new ArrayList<Text>();
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//获取join的类型
joinType = context.getConfiguration().get("join.type");
} @Override
protected void reduce(Text key, Iterable<Text> values,Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
listA.clear();
listB.clear(); Iterator<Text> iterator = values.iterator();
while(iterator.hasNext()){
String value = iterator.next().toString();
if(value.charAt(0)=='A')
listA.add(new Text(value.substring(1)));
if(value.charAt(0)=='B')
listB.add(new Text(value.substring(1)));
}
joinAndWrite(context);
} private void joinAndWrite(Context context)
throws IOException, InterruptedException{
//inner join
if(joinType.equalsIgnoreCase("inner")){
if(!listA.isEmpty() && !listB.isEmpty()) {
for (Text A : listA)
for(Text B : listB){
context.write(A, B);
}
}
}
//left outer join
if(joinType.equalsIgnoreCase("leftouter")){
if(!listA.isEmpty()){
for (Text A : listA){
if(!listB.isEmpty()){
for(Text B: listB){
context.write(A, B);
}
}
else{
context.write(A, EMPTY_VALUE);
}
}
}
}
//right outer join
else if(joinType.equalsIgnoreCase("rightouter")){
if(!listB.isEmpty()){
for(Text B: listB){
if(!listA.isEmpty()){
for(Text A: listA)
context.write(A, B);
}else {
context.write(EMPTY_VALUE, B);
}
}
}
}
//full outer join
else if(joinType.equalsIgnoreCase("fullouter")){
if(!listA.isEmpty()){
for (Text A : listA){
if(!listB.isEmpty()){
for(Text B : listB){
context.write(A, B);
}
}else {
context.write(A, EMPTY_VALUE);
}
}
}else{
for(Text B : listB)
context.write(EMPTY_VALUE, B);
}
}
//anti join
else if(joinType.equalsIgnoreCase("anti")){
if(listA.isEmpty() ^ listB.isEmpty()){
for(Text A : listA)
context.write(A, EMPTY_VALUE);
for(Text B : listB)
context.write(EMPTY_VALUE, B);
}
}
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 4)
{
System.err.println("params:<UserInDir> <CityInDir> <OutDir> <join Type>");
System.exit(1);
}
Job job = new Job(conf,"Reduce side join Job");
job.setJarByClass(ReduceJoin.class);
job.setReducerClass(JoinReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
MultipleInputs.addInputPath(job, new Path(otherArgs[0]), TextInputFormat.class, UserJoinMapper.class);
MultipleInputs.addInputPath(job, new Path(otherArgs[1]), TextInputFormat.class, CityJoinMapper.class);
FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
job.getConfiguration().set("join.type", otherArgs[3]); System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

4.3 结果

运行语句:

inner join:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hhb2xvdmVqaWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">


left outer join:


right outer join:


full outer join:


anti join:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hhb2xvdmVqaWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">





MapReduce的Reduce side Join的更多相关文章

  1. 0 MapReduce实现Reduce Side Join操作

    一.准备两张表以及对应的数据 (1)m_ys_lab_jointest_a(以下简称表A) 建表语句: create table if not exists m_ys_lab_jointest_a ( ...

  2. hadoop 多表join:Map side join及Reduce side join范例

    最近在准备抽取数据的工作.有一个id集合200多M,要从另一个500GB的数据集合中抽取出所有id集合中包含的数据集.id数据集合中每一个行就是一个id的字符串(Reduce side join要在每 ...

  3. hadoop的压缩解压缩,reduce端join,map端join

    hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...

  4. MapReduce编程之Semi Join多种应用场景与使用

    Map Join 实现方式一 ● 使用场景:一个大表(整张表内存放不下,但表中的key内存放得下),一个超大表 ● 实现方式:分布式缓存 ● 用法: SemiJoin就是所谓的半连接,其实仔细一看就是 ...

  5. Map Reduce Application(Join)

    We are going to explain how join works in MR , we will focus on reduce side join and map side join. ...

  6. mapreduce作业reduce被大量kill掉

    之前有一段时间.我们的hadoop2.4集群压力非常大.导致提交的job出现大量的reduce被kill掉.同样的job执行时间比在hadoop0.20.203上面长了非常多.这个问题事实上是redu ...

  7. Reduce Side Join实现

    关于reduce边join,其最重要的是使用MultipleInputs.addInputPath这个api对不同的表使用不同的Map,然后在每个Map里做一下该表的标识,最后到了Reduce端再根据 ...

  8. Yarn源码分析之参数mapreduce.job.reduce.slowstart.completedmaps介绍

    mapreduce.job.reduce.slowstart.completedmaps是MapReduce编程模型中的一个参数,这个参数的含义是,当Map Task完成的比例达到该值后才会为Redu ...

  9. mapreduce中reduce没有执行

    hadoop执行mapreduce过程reduce不执行原因 1.如果你的map过程中没有context.write()是不执行reduce过程的:2.如果你的map过程中context.write( ...

随机推荐

  1. iOS截取特定的字符串(正则匹配)

    有时候我们会有需求从一个字符串中截取其他的字符串,根据情况的不同,我们来分析几种方法~~ 一. 固定长度字符串中截取固定位置长度的字符串 // 这是比较简单的一种情况:比如截取手机号的后4位 let ...

  2. CE工具里自带的学习工具--第三关

    图解: 重复第5,6,7,8,9步,最终得到:

  3. caffe blob理解

    blob数据结构是caffe中基本的数据存储单元,它主要存储的数据是网络中的中间数据变量,比如各层的输入和输出:代价函数关于网络各层参数的梯度. blob中除了存储数据外,还有一些标记数据的参数,以下 ...

  4. tomcat修改编码格式

    在TOMCAT中的conf文件夹下server.xml中的 <Connector中添加两个设置useBodyEncodingForURI="true" //设置POST和GE ...

  5. 微信小程序UI组件库 iView Weapp快速上手

    概述 今天在网上突然看到iView新出了一个微信小程序的组件库iView Weapp,自己就上手试了一下,发现用起来还是不错的,把自己使用的过程与大家分享下. 一 预览iView组件 1.可以在手机上 ...

  6. vue 中动画配置

    <transition name="fade">   <router-view ></router-view> </transition& ...

  7. manacher马拉车算法

    Manacher算法讲解 总有人喜欢搞事情,出字符串的题,直接卡掉了我的40分 I.适用范围 manacher算法解决的是字符串最长回文子串长度的问题. 关键词:最长 回文 子串 II.算法 1.纯暴 ...

  8. PHP面向对象设计五大原则(SOLID)梳理总结

    PHP设计原则梳理,参考<PHP核心技术与最佳实践>.<敏捷开发原则.模式与实践>,文章PHP面向对象设计的五大原则.设计模式原则SOLID 单一职责原则(Single Res ...

  9. CSS Specificity(特殊性)

    CSS的特殊性是非常重要却又经常被忽视的属性,特别是在团队合作下的产品迭代开发中,因为不注重CSS的特殊性最后导致某些代码混乱不堪,这里就把自己对CSS特殊性的认识做一些归纳总结. CSS的特殊性(s ...

  10. ubuntu 安装 navicat

    下载navicat解压到opt目录 创建桌面快捷方式sudo vim /usr/share/applications/navicat.desktop [Desktop Entry] Encoding= ...