AdaBoost算法原理

  AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(强分类器)。理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零。AdaBoost算法中不同的训练集是通过调整每个样本对应的权重实现的。最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h1(x)。对于h1(x)错分的样本,则增加其对应样本的权重;而对于正确分类的样本,则降低其权重。这样可以使得错分的样本突出出来,并得到一个新的样本分布。同时,根据错分的情况赋予h1(x)一个权重,表示该基本分类器的重要程度,错分得越少权重越大。在新的样本分布下,再次对基本分类器进行训练,得到基本分类器h2(x)及其权重。依次类推,经过T次这样的循环,就得到了T个基本分类器,以及T个对应的权重。最后把这T个基本分类器按一定权重累加起来,就得到了最终所期望的强分类器。

AdaBoost算法的具体描述如下:

假定X表示样本空间,Y表示样本类别标识集合,假设是二值分类问题,这里限定Y={-1,+1}。令S={(Xi,yi)|i=1,2,…,m}为样本训练集,其中Xi∈X,yi∈Y。

①   始化m个样本的权值,假设样本分布Dt为均匀分布:Dt(i)=1/m,Dt(i)表示在第t轮迭代中赋给样本(xi,yi)的权值。

②   令T表示迭代的次数。

③   For t=1 to T do

根据样本分布Dt,通过对训练集S进行抽样(有回放)产生训练集St

在训练集St上训练分类器ht

用分类器ht对原训练集S中的所有样本分类。

得到本轮的分类器ht:X →Y,并且有误差εt=Pri-Di[ht(xi) ≠yi]。

令αt=(1/2)ln[(1-εt)/ εt]。

更新每个样本的权值,

其中,Zt是一个正规因子,用来确保ΣiDt+1(i)=1。

end for

④   最终的预测输出为:

AdaBoost算法原理简介的更多相关文章

  1. 集成学习值Adaboost算法原理和代码小结(转载)

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...

  2. 集成学习之Adaboost算法原理

    在boosting系列算法中,Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归. 1. boosting算法基本原理 集成学习原理中,boosting系列算法的思想:

  3. 集成学习之Adaboost算法原理小结

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...

  4. 机器学习之Adaboost算法原理

    转自:http://www.cnblogs.com/pinard/p/6133937.html 在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习 ...

  5. 基于单层决策树的AdaBoost算法原理+python实现

    这里整理一下实验课实现的基于单层决策树的弱分类器的AdaBoost算法. 由于是初学,实验课在找资料的时候看到别人的代码中有太多英文的缩写,不容易看懂,而且还要同时看代码实现的细节.算法的原理什么的, ...

  6. AdaBoost 算法原理及推导

    AdaBoost(Adaptive Boosting):自适应提升方法. 1.AdaBoost算法介绍 AdaBoost是Boosting方法中最优代表性的提升算法.该方法通过在每轮降低分对样例的权重 ...

  7. AdaBoost算法原理及OpenCV实例

    备注:OpenCV版本 2.4.10 在数据的挖掘和分析中,最基本和首要的任务是对数据进行分类,解决这个问题的常用方法是机器学习技术.通过使用已知实例集合中所有样本的属性值作为机器学习算法的训练集,导 ...

  8. (数据科学学习手札13)K-medoids聚类算法原理简介&Python与R的实现

    前几篇我们较为详细地介绍了K-means聚类法的实现方法和具体实战,这种方法虽然快速高效,是大规模数据聚类分析中首选的方法,但是它也有一些短板,比如在数据集中有脏数据时,由于其对每一个类的准则函数为平 ...

  9. AdaBoost 算法-分析波士顿房价数据集

    公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...

随机推荐

  1. 00031_ArrayList集合中常用的方法

    1.ArrayList集合提供的一些常用方法 import java.util.ArrayList; public class ArrayListDemo01 { public static void ...

  2. .net 操作Access数据库

    using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...

  3. 在 Yii2 项目中使用 Composer 添加 FontAwesome 字体资源

    2014-06-21 19:05 原文 简体 繁體 2,123 次围观 前天帮同事改个十年前的网站 bug,页面上一堆 include require 不禁让人抱头痛哭.看到 V2EX 上的讨论说,写 ...

  4. git删除本地所有的更改

    删除本地所有为暂存的修改: git checkout -f 如果有修改以及加入暂存区的话 那么 使用如下命令: git reset --hard git clean -xdf

  5. redis2.3.7安装时出现undefined reference to `clock_gettime'

    (转自:http://blog.csdn.net/qq_28779503/article/details/54844988) undefined reference to `clock_gettime ...

  6. Python之Regular Expressions(正则表达式)

    在编写处理字符串的程序或网页时,经常会有查找符合某些复杂规则的字符串的需要.正则表达式就是用于描述这些规则的工具.换句话说,正则表达式就是记录文本规则的代码. 很可能你使用过Windows/Dos下用 ...

  7. mysql语句优化方案(网上流传)

    关于mysql处理百万级以上的数据时如何提高其查询速度的方法 最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法. 由于在参与的实际项目中发现当mysql表的数 ...

  8. [NOIP2011] 洛谷P1313 计算系数

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  9. Codeforces963D. Frequency of String

    $n \leq 100000$的一文本串,给$m \leq 100000$个询问,每次问一小串在文本串的哪一个最短的子串里出现指定次数.注意,询问串互不相同,且总长度$\leq 100000$. 比赛 ...

  10. 关于内存 转载自http://blog.csdn.net/xluren/article/details/8150723

    首先感谢下原作者,写的真的非常明白,非常详细 1.预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局 ...