这个题lba等神犇说可以不用离散化,但是我就是要用。

题干:

Description

There are N,  <= N <= , rectangles in the -D xy-plane. The four sides of a rectangle are horizontal or vertical line segments. Rectangles are defined by their lower-left and upper-right corner points. Each corner point is a pair of two nonnegative integers in the range of  through , indicating its x and y coordinates. 

Assume that the contour of their union is defi ned by a set S of segments. We can use a subset of S to construct simple polygon(s). Please report the total area of the polygon(s) constructed by the subset of S. The area should be as large as possible. In a -D xy-plane, a polygon is defined by a finite set of segments such that every segment extreme (or endpoint) is shared by exactly two edges and no subsets of edges has the same property. The segments are edges and their extremes are the vertices of the polygon. A polygon is simple if there is no pair of nonconsecutive edges sharing a point. 

Example: Consider the following three rectangles: 

rectangle : < (, ) (, ) >, 

rectangle : < (, ) (, ) >, 

rectangle : < (, ) (, ) >. 

The total area of all simple polygons constructed by these rectangles is .
Input The input consists of multiple test cases. A line of -'s separates each test case. An extra line of 4 -1's marks the end of the input. In each test case, the rectangles are given one by one in a line. In each line for a rectangle, non-negative integers are given. The first two are the x and y coordinates of the lower-left corner. The next two are the x and y coordinates of the upper-right corner.
Output
For each test case, output the total area of all simple polygons in a line.
Sample Input - - - - - - - -
- - - - 
Sample Output

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
const int mod = ;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
{x = x * + c - '';if(x > mod) x %= mod;}
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
struct node
{
int s,e,h,f;
}p[];
int n,m,ans;
int tree[],x[];
int c[];
void init()
{
n = m = ans = ;
clean(tree);
clean(p);
clean(c);
x[] = -;
}
bool cmp(node a,node b)
{
return a.h < b.h;
} void push_up(int o,int l,int r)
{
// printf("@%d %d\n",l,r);
if(c[o] != ) tree[o] = x[r+] - x[l];
else if(l == r) tree[o] = ;
else tree[o] = tree[o << ] + tree[o << | ];
} void update(int o,int l,int r,int x,int y,int w)
{
if(l == x && r == y) c[o] += w;
else
{
int mid = (l + r) >> ;
if(y <= mid) update(o << ,l,mid,x,y,w);
else if(x > mid) update(o << | ,mid + ,r,x,y,w);
else update(o << ,l,mid,x,mid,w),update(o << | ,mid + ,r,mid + ,y,w);
}
push_up(o,l,r);
}
int main()
{
int a,b,c,d;
init();
while(scanf("%d%d%d%d",&a,&b,&c,&d) != EOF)
{
if(a < )
break;
while(a >= )
{
p[++n].s = a;p[n].e = c;p[n].h = b;p[n].f = ;
x[n] = a;
p[++n].s = a;p[n].e = c;p[n].h = d;p[n].f = -;
x[n] = c;
read(a);read(b);read(c);read(d);
}
sort(x + ,x + n + );
m = unique(x + ,x + n + ) - x - ;
sort(p + ,p + n + ,cmp);
duke(i,,n-)
{
int l = lower_bound(x,x + m,p[i].s) - x;
int r = lower_bound(x,x + m,p[i].e) - x - ;
update(,,m,l,r,p[i].f);
ans += tree[] * (p[i + ].h - p[i].h);
}
printf("%d\n",ans);
init();
}
return ;
}

POJ Area of Simple Polygons 扫描线的更多相关文章

  1. POJ 1389 Area of Simple Polygons 扫描线+线段树面积并

    ---恢复内容开始--- LINK 题意:同POJ1151 思路: /** @Date : 2017-07-19 13:24:45 * @FileName: POJ 1389 线段树+扫描线+面积并 ...

  2. POJ 1389 Area of Simple Polygons | 扫描线

    请戳此处 #include<cstdio> #include<algorithm> #include<cstring> #define N 1010 #define ...

  3. POJ1389:Area of Simple Polygons——扫描线线段树题解+全套代码注释

    http://poj.org/problem?id=1389 题面描述在二维xy平面中有N,1 <= N <= 1,000个矩形.矩形的四边是水平或垂直线段.矩形由左下角和右上角的点定义. ...

  4. 【POJ 1389】Area of Simple Polygons(线段树+扫描线,矩形并面积)

    离散化后,[1,10]=[1,3]+[6,10]就丢了[4,5]这一段了. 因为更新[3,6]时,它只更新到[3,3],[6,6]. 要么在相差大于1的两点间加入一个值,要么就让左右端点为l,r的线段 ...

  5. [poj] 1389 Area of Simple Polygons

    原题 线段树+扫描线 对于这样一个不规则图形,我们要求他的面积有两种方法,割和补. 补显然不行,因为补完你需要求补上去的内部分不规则图形面积-- 那么怎么割呢? 像这样: 我们就转化成了无数个矩形的和 ...

  6. Area of Simple Polygons

    poj1389:http://poj.org/problem?id=1389 题意:求矩形面积的并题解:扫描线加线段树 同poj1389 #include<iostream> #inclu ...

  7. POJ1389 Area of Simple Polygons 线段树

    POJ1389 给定n个整数点矩形,求面积并. 显然ans必然是整数. 记录若干个事件,每个矩形的左边的竖边记为开始,右边的竖边记为结束. 进行坐标离散化后用线段树维护每个竖的区间, 就可以快速积分了 ...

  8. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  9. POJ 3468.A Simple Problem with Integers-线段树(成段增减、区间查询求和)

    POJ 3468.A Simple Problem with Integers 这个题就是成段的增减以及区间查询求和操作. 代码: #include<iostream> #include& ...

随机推荐

  1. CPU总线

    总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束.按照计算机所传输的信息种类,计算机的总线可以划分为数据总线.地址总线和控制总线,分别用来传输数据.数据地址和控制 ...

  2. Robot Framework(九) 执行测试用例——基本用法

    3.1基本用法 Robot Framework测试用例从命令行执行,默认情况下,最终结果是XML格式的输出文件和HTML 报告和日志.执行后,可以组合输出文件,然后使用rebot工具进行后处理. 3. ...

  3. ThinkPHP---TP功能类之验证码

    [一]验证码 验证码全称:captcha(全自动识别机器与人类的图灵测试),简单理解就是区分当前操作是人执行的还是机器执行的 常见验证码分3种:页面上图片形式.短信验证码(邮箱验证可以归类到短信验证码 ...

  4. SSH命令行传输文件到远程服务器

    Ubuntu操作系统 SCP命令 使用方式如下: 1.上传本地文件到远程服务器 scp /var/www/test.php root@192.168.0.101:/var/www/ 把本机/var/w ...

  5. PHP 加密:Password Hashing API

    PHP 5.5 之后引入 Password hashing API 用于创建和校验哈希密码,它属于内核自带,无需进行任何扩展安装和配置.它主要提供了四个函数以供使用: password_hash(): ...

  6. for循环,字典遍历(一)

    #items(): 返回字典中所有 key.value #keys(): 返回字典中所有 key 的列表 #values():返回字典中所有 value 的列表 my_dict = {'语文':89, ...

  7. C语言scanf函数详细解释(转载)

    原文地址:https://blog.csdn.net/21aspnet/article/details/174326 scanf 函数名: scanf 功 能: 执行格式化输入 用 法: int sc ...

  8. Educational Codeforces Round 41 D. Pair Of Lines(961D)

    [题意概述] 给出平面上的10W个点,要求判断这些点能否被两条直线穿过,即一个点至少在一条直线上. [题解] 思路很快可以想到.取3个不共线的点,它们形成一个三角形:如果有解,其中的一条直线一定与三角 ...

  9. javaHttp请求,接收到的是中文乱码如何处理

    可在service()方法中加日志,看哪种不是乱码 例如,中文乱码的话,中文编码一般有 UTF-8,GBK,ISO-8859-1 加日志为 List<String> list = new ...

  10. 【UOJ34】高精度乘法(FFT)

    题意: 思路:FFT模板,自带10倍常数 type cp=record x,y:double; end; arr=..]of cp; var a,b,cur:arr; n,m,n1,n2,i,j:lo ...