http://www.lydsy.com/JudgeOnline/problem.php?id=4869

终于A了。。。参考了下dalao的代码。。。

拓展欧几里得定理,改了几次就不变了,但是用的时候要在快速幂里判是不是要用。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = ;
int n, m, cnt;
ll p, c;
ll phi[N], table[N];
namespace seg // n^x = n^(x % phi[x] + phi[x])
{
struct data {
ll ans, mn;
} tree[N << ];
inline ll getphi(ll x)
{
ll ret = x, lim = x;
for(ll i = ; i * i <= lim; ++i) if(x % i == )
{
ret = ret * (i - ) / i;
while(x % i == ) x /= i;
}
// printf("ret=%d\n", ret);
if(x > ) ret = ret * (x - ) / x;
return ret;
}
inline ll power(ll x, ll t, ll p, bool &flag)
{
bool big = false;
ll ret = ;
for(; t; t >>= )
{
if(t & )
{
ret = ret * x ;
flag |= big | (ret >= p);
ret %= p;
}
x = x * x; if(x >= p) big = true, x %= p;
}
return ret;
}
ll calc(ll x, int t)
{
if(x >= phi[t]) x = x % phi[t] + phi[t];
for(int i = t - ; i >= ; --i)
{
bool flag = false;
x = power(c, x, phi[i], flag);
if(flag) x += phi[i];
}
return x % phi[];
}
inline void build(int l, int r, int x)
{
if(l == r) {
tree[x].ans = table[l];
return;
}
int mid = (l + r) >> ;
build(l, mid, x << );
build(mid + , r, x << | );
tree[x].ans = (tree[x << ].ans
+ tree[x << | ].ans) % phi[];
}
inline void update(int l, int r, int x, int a, int b)
{ //如果这次的幂和上次一样就不变了
if(tree[x].mn >= cnt) return;
if(l > b || r < a) return;
if(l == r)
{
++tree[x].mn;
tree[x].ans = calc(table[l], tree[x].mn);
return;
}
int mid = (l + r) >> ;
update(l, mid, x << , a, b);
update(mid + , r, x << | , a, b);
tree[x].mn = min(tree[x << ].mn,
tree[x << | ].mn);
tree[x].ans = (tree[x << ].ans +
tree[x << | ].ans) % phi[];
}
inline ll query(int l, int r, int x, int a, int b)
{
if(l > b || r < a) return ;
if(l >= a && r <= b) return tree[x].ans % phi[];
int mid = (l + r) >> , ret = ;
ret = (ret + query(l, mid, x << , a, b)) % phi[];
ret = (ret + query(mid + , r, x << | , a, b)) % phi[];
return ret;
}
} using namespace seg;
int main()
{
scanf("%d%d%lld%lld", &n, &m, &p, &c);
phi[] = p;
ll P = p;
while(P != ) phi[++cnt] = P = getphi(P);
phi[++cnt] = ;
for(int i = ; i <= n; ++i) scanf("%lld", &table[i]);
build(, n, );
while(m--)
{
int opt, l, r; scanf("%d", &opt);
if(opt == )
{
scanf("%d%d", &l, &r);
update(, n, , l, r);
}
if(opt == )
{
scanf("%d%d", &l, &r);
printf("%lld\n", query(, n, , l, r));
}
}
return ;
}

bzoj4869的更多相关文章

  1. 【BZOJ4869】相逢是问候(线段树,欧拉定理)

    [BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varph ...

  2. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

  3. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  4. Bzoj4869: [Shoi2017]相逢是问候

    题面 传送门 Sol 摆定理 \[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~ ...

  5. bzoj千题计划271:bzoj4869: [六省联考2017]相逢是问候

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath&g ...

  6. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  7. 【BZOJ4869】【SHOI2017】相逢是问候

    Description BZOJ传送门 Solution 这题涉及到指数嵌套堆叠,可能可以用欧拉函数解决. 试想一个数\(a_i\)经过\(k\)次操作后会变成什么? \[ k个c\;\; \begi ...

  8. 【bzoj4869】相逢是问候

    Portal-->bzoj4869 Solution 这道题的话..长得就是线段树的样子qwq 如果做过的话..可能会联想到bzoj3211(没写博qwq晚点再说吧哈哈..) 首先大胆猜一波结论 ...

  9. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

  10. BZOJ4869:[SHOI2017]相逢是问候——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P ...

随机推荐

  1. python视频 神经网络 Tensorflow

    python视频 神经网络 Tensorflow 模块 视频教程 (带源码) 所属网站分类: 资源下载 > python视频教程 作者:smile 链接:http://www.pythonhei ...

  2. Python之面向对象函数式编程

    Python之面向对象函数式编程 函数式编程的根本就是用 def 去模拟数学式的编程逻辑. 类似与 y = 2*x + 1 ,当x = 3 时,函数的结果y就得7. def test(x): retu ...

  3. eclipse中自动生成注释

    eclipse中自动生成注释 包前缀设置的地方 注释模板设置的地方 Eclipse自动生成方法注释 快捷键 自动生成方法的注释格式,例如 /*** @param str* @return* @thro ...

  4. 防火墙内设置FileZilla Server注意事项

    开启了Windows下的防火墙,如何设置FileZilla Server 相关选项,能在服务器端只开启21,23端口就可以正常连接使用 方法/步骤   1.       开启windows防火墙,同时 ...

  5. 【BZOJ4583】购物(组合计数)

    题意:商店出售3种颜色的球,分别为红.绿.蓝. 城市里有n个商店,第i个商店在第First_i天开始营业,连续营业Red_i+Green_i+Blue_i天,每个商店每天只能出售一种颜色的球. 每天最 ...

  6. BZOJ2272: [Usaco2011 Feb]Cowlphabet 奶牛文字

    n<=250个大写字母和m<=250个小写字母,给p<=200个合法相邻字母,求用这些合法相邻字母的规则和n+m个字母能合成多少合法串,答案mod 97654321. 什么鬼膜数.. ...

  7. 【转】Intellij IDEA 快捷键大全

    IntelliJ Idea 常用快捷键列表 Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Sh ...

  8. AOJ 0118 Property Distribution (DFS)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46522 简单DFS,题目翻译参考  http://blog.csdn.net ...

  9. node+mongodb+win7

    一.安装mongodb,参照教程,注意要先启动mongod.exe,再启动mongd.exe.

  10. Mycat环境搭建教程收集(待实践)

    先收集,后续再实践. http://blog.csdn.net/dreamcode/article/details/44307377 http://blog.csdn.net/lanonola/art ...