bzoj3637 CodeChef SPOJ - QTREE6 Query on a tree VI 题解
题意:
一棵n个节点的树,节点有黑白两种颜色,初始均为白色。两种操作:1.更改一个节点的颜色;2.询问一个节点所处的颜色相同的联通块的大小。
思路:
1.每个节点记录仅考虑其子树时,假设其为黑色时所处的黑色联通块的大小和假设其为白色时所处的白色联通块的大小(树状数组维护)。
2.查询时找到深度最小的、与该点颜色相同的且两点之间的点颜色均与这两点相同(两点可以重合)(不妨称它为最远祖先)的答案。
3.修改时应该修改该节点的父亲至最远祖先的父亲上的值。
4.用树链剖分和树状数组维护。
5.寻找最远祖先时,跳重链,树状数组维护当前颜色(0为白 1为黑),查询重链上的颜色和,判断是否整段相同。是则继续向上跳,否则二分祖先。
反思:
1.越上面的dfn越小,二分开始打反了(二分看了Po姐的)
2.树链剖分有些生疏,开始时打错死循了。树状数组的应用不熟练。
3.开始时修改时是边找最远祖先边修改的,结果在根周围时出现了问题。
4.根在修改、查询时都特判一下,重链的端点为最远祖先时也特判一下。
代码:
#include<cstdio>
#define M 100005
#define swap(x,y) u=x,x=y,y=u
int n,u,cnt,dfn,p[M],v[M<<],id[M],co[M],sz[M],di[M],dep[M],top[M],hea[M],nex[M<<],ans[M][];
bool col[M]; void ins(int x,int y) { v[++cnt]=y,nex[cnt]=hea[x],hea[x]=cnt; }
void Add(int x,int y) { for (;x<=n;x+=x&-x) co[x]+=y; }
int Ask(int x) { int s=; for (;x;x-=x&-x) s=s+co[x]; return s; }
void add(int x,int y,bool c) { for (;x<=n;x+=x&-x) ans[x][c]+=y; }
int ask(int x,bool c) { int s=; for (;x;x-=x&-x) s=s+ans[x][c]; return s;}
bool pd(int x,int y,bool c)
{ return c && (Ask(y)-Ask(x-))==(y-x+) || (!c) && (Ask(x-)==Ask(y)); }
int read()
{
int x=; char ch=getchar();
for (;ch< || ch>;ch=getchar());
for (;ch> && ch<;ch=getchar()) x=(x<<)+(x<<)+ch-;
return x;
} void dfs(int x)
{
sz[x]=;
for (int i=hea[x],y;i;i=nex[i])
if ((y=v[i])^p[x]) p[y]=x,dep[y]=dep[x]+,dfs(y),sz[x]+=sz[y];
} void dfs(int x,int chain)
{
int i,k=,y;
top[x]=chain,id[x]=++dfn,di[dfn]=x;
for (i=hea[x];i;i=nex[i])
if ((y=v[i])^p[x] && sz[y]>sz[k]) k=y;
if (!k) return; dfs(k,chain);
for (i=hea[x];i;i=nex[i])
if ((y=v[i])^p[x] && y^k) dfs(y,y);
} void change(int x,int y,int v,bool c)
{
for (;top[x]!=top[y];x=p[top[x]])
{
if (dep[top[x]]<dep[top[y]]) swap(x,y);
add(id[top[x]],v,c),add(id[x]+,-v,c);
}
if (dep[x]<dep[y]) swap(x,y);
add(id[y],v,c),add(id[x]+,-v,c);
} int find(int x,bool c)
{
int l,r,t,y,mid;
for (;x^;x=p[y])
{
l=id[y=top[x]],t=r=id[x];
if (!pd(l,r,c))
{
while (l+<r)
if (pd((mid=(l+r)>>),t,c)) r=mid; else l=mid+;
if (pd(l,t,c)) return l; return r;
}
if (col[p[y]]^c) return l;
}
return ;
} int main()
{
n=read(); int i,x,y,m;
for (i=;i<n;++i) x=read(),y=read(),ins(x,y),ins(y,x);
dfs(p[]=),dfs(,),add(,,);
for (i=;i<=n;++i) add(id[i],sz[i],),add(id[i]+,-sz[i],);
for (m=read();m--;)
{
i=read(),x=read();
if (i)
{
i=col[x];if (x-) change(p[x],p[di[find(x,i)]],-ask(id[x],i),i);
if (i) Add(id[x],-); else Add(id[x],); col[x]^=;
i=col[x];if (x-) change(p[x],p[di[find(x,i)]],ask(id[x],i),i);
}
else i=col[x],printf("%d\n",ask(find(x,i),i));
}
return ;
}
bzoj3637 CodeChef SPOJ - QTREE6 Query on a tree VI 题解的更多相关文章
- SPOJ QTREE6 Query on a tree VI 树链剖分
题意: 给出一棵含有\(n(1 \leq n \leq 10^5)\)个节点的树,每个顶点只有两种颜色:黑色和白色. 一开始所有的点都是黑色,下面有两种共\(m(1 \leq n \leq 10^5) ...
- QTREE6 - Query on a tree VI 解题报告
QTREE6 - Query on a tree VI 题目描述 给你一棵\(n\)个点的树,编号\(1\)~\(n\).每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我 ...
- SPOJ 16549 - QTREE6 - Query on a tree VI 「一种维护树上颜色连通块的操作」
题意 有操作 $0$ $u$:询问有多少个节点 $v$ 满足路径 $u$ 到 $v$ 上所有节点(包括)都拥有相同的颜色$1$ $u$:翻转 $u$ 的颜色 题解 直接用一个 $LCT$ 去暴力删边连 ...
- SPOJ QTREE Query on a tree VI
You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are number ...
- SP16549 QTREE6 - Query on a tree VI LCT维护颜色联通块
\(\color{#0066ff}{ 题目描述 }\) 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v ...
- [QTree6]Query on a tree VI
Description: 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括 ...
- 洛谷SP16549 QTREE6 - Query on a tree VI(LCT)
洛谷题目传送门 思路分析 题意就是要维护同色连通块大小.要用LCT维护子树大小就不说了,可以看看蒟蒻的LCT总结. 至于连通块如何维护,首先肯定可以想到一个很naive的做法:直接维护同色连通块,每次 ...
- SP16549 QTREE6 - Query on a tree VI(LCT)
题意翻译 题目描述 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括)都拥 ...
- bzoj 3637: Query on a tree VI 树链剖分 && AC600
3637: Query on a tree VI Time Limit: 8 Sec Memory Limit: 1024 MBSubmit: 206 Solved: 38[Submit][Sta ...
随机推荐
- PDO相关函数
(PHP 5 >= 5.1.0, PHP 7, PECL pdo >= 0.1.0) PDO::__construct — 创建一个表示数据库连接的 PDO 实例 说明 PDO::__co ...
- 关于java的Long 类型到js丢失精度的问题
写代码碰到一个bug, 现象是 后台Java返回的18位的Long类型的数据,到前台丢失了精度. 查了一下,原因是 java的Long类型是18位, 而 js的Long类型(虽然没有明确定义的Lon ...
- php 缓存工具类 实现网页缓存
php 缓存工具类 实现网页缓存 php程序在抵抗大流量访问的时候动态网站往往都是难以招架,所以要引入缓存机制,一般情况下有两种类型缓存 一.文件缓存 二.数据查询结果缓存,使用内存来实现高速缓存 本 ...
- RxJava尝试取代Handler初探
在之前的一篇文章中,我们探究了RxJava的使用方法,详细请看https://www.cnblogs.com/yanyojun/p/9745675.html 根据扔物线大神的描述,如果用一个词来概括R ...
- linux环境iptables配置
Linux iptables常用规则 设置一个自己用的表, 允许ping 允许ssh 允许 web 允许mysql 允许 ftp 允许dns查询 其他的拒绝.脚本如下 # Firewall confi ...
- SQL Server时间类型datetime
SQL Server时间类型datetime 兼容ADO的COleDateTime. SQL datetime 日期和时间数据,可表示1753.1.1 至 9999.12.31的时间,精度为1/300 ...
- SQLite – DISTINCT 关键字
SQLite – DISTINCT关键字 使用SQLite DISTINCT关键字与SELECT语句来消除所有重复的记录和获取唯一的记录. 可能存在一种情况,当你有多个表中重复的记录. 获取这些记录, ...
- centos7 设置grub密码及单用户登录实例
centos7与centos6在设置grub密码的操作步骤上有很大的差别,特此记录供以后查用 grub加密的目的: 防止不法分子利用单用户模式修改root密码 给grub加密可以采用明文或者加密的密文 ...
- 页面定制CSS代码
博客皮肤:SimpleMemory .catListTitle { margin-top: 21px; margin-bottom: 10.5px; text-align: left; border- ...
- python基础一 day9 函数升阶(2)
def max(a,b): return a if a>b else bprint(max(1, 2)) # 函数进阶# a = 1# def func():# print(a)# func() ...