题意:

  一棵n个节点的树,节点有黑白两种颜色,初始均为白色。两种操作:1.更改一个节点的颜色;2.询问一个节点所处的颜色相同的联通块的大小。

思路:

  1.每个节点记录仅考虑其子树时,假设其为黑色时所处的黑色联通块的大小和假设其为白色时所处的白色联通块的大小(树状数组维护)。
  2.查询时找到深度最小的、与该点颜色相同的且两点之间的点颜色均与这两点相同(两点可以重合)(不妨称它为最远祖先)的答案。
  3.修改时应该修改该节点的父亲至最远祖先的父亲上的值。
  4.用树链剖分和树状数组维护。
  5.寻找最远祖先时,跳重链,树状数组维护当前颜色(0为白 1为黑),查询重链上的颜色和,判断是否整段相同。是则继续向上跳,否则二分祖先。

反思:

  1.越上面的dfn越小,二分开始打反了(二分看了Po姐的)
  2.树链剖分有些生疏,开始时打错死循了。树状数组的应用不熟练。
  3.开始时修改时是边找最远祖先边修改的,结果在根周围时出现了问题。
  4.根在修改、查询时都特判一下,重链的端点为最远祖先时也特判一下。

代码:

 #include<cstdio>
#define M 100005
#define swap(x,y) u=x,x=y,y=u
int n,u,cnt,dfn,p[M],v[M<<],id[M],co[M],sz[M],di[M],dep[M],top[M],hea[M],nex[M<<],ans[M][];
bool col[M]; void ins(int x,int y) { v[++cnt]=y,nex[cnt]=hea[x],hea[x]=cnt; }
void Add(int x,int y) { for (;x<=n;x+=x&-x) co[x]+=y; }
int Ask(int x) { int s=; for (;x;x-=x&-x) s=s+co[x]; return s; }
void add(int x,int y,bool c) { for (;x<=n;x+=x&-x) ans[x][c]+=y; }
int ask(int x,bool c) { int s=; for (;x;x-=x&-x) s=s+ans[x][c]; return s;}
bool pd(int x,int y,bool c)
{ return c && (Ask(y)-Ask(x-))==(y-x+) || (!c) && (Ask(x-)==Ask(y)); }
int read()
{
int x=; char ch=getchar();
for (;ch< || ch>;ch=getchar());
for (;ch> && ch<;ch=getchar()) x=(x<<)+(x<<)+ch-;
return x;
} void dfs(int x)
{
sz[x]=;
for (int i=hea[x],y;i;i=nex[i])
if ((y=v[i])^p[x]) p[y]=x,dep[y]=dep[x]+,dfs(y),sz[x]+=sz[y];
} void dfs(int x,int chain)
{
int i,k=,y;
top[x]=chain,id[x]=++dfn,di[dfn]=x;
for (i=hea[x];i;i=nex[i])
if ((y=v[i])^p[x] && sz[y]>sz[k]) k=y;
if (!k) return; dfs(k,chain);
for (i=hea[x];i;i=nex[i])
if ((y=v[i])^p[x] && y^k) dfs(y,y);
} void change(int x,int y,int v,bool c)
{
for (;top[x]!=top[y];x=p[top[x]])
{
if (dep[top[x]]<dep[top[y]]) swap(x,y);
add(id[top[x]],v,c),add(id[x]+,-v,c);
}
if (dep[x]<dep[y]) swap(x,y);
add(id[y],v,c),add(id[x]+,-v,c);
} int find(int x,bool c)
{
int l,r,t,y,mid;
for (;x^;x=p[y])
{
l=id[y=top[x]],t=r=id[x];
if (!pd(l,r,c))
{
while (l+<r)
if (pd((mid=(l+r)>>),t,c)) r=mid; else l=mid+;
if (pd(l,t,c)) return l; return r;
}
if (col[p[y]]^c) return l;
}
return ;
} int main()
{
n=read(); int i,x,y,m;
for (i=;i<n;++i) x=read(),y=read(),ins(x,y),ins(y,x);
dfs(p[]=),dfs(,),add(,,);
for (i=;i<=n;++i) add(id[i],sz[i],),add(id[i]+,-sz[i],);
for (m=read();m--;)
{
i=read(),x=read();
if (i)
{
i=col[x];if (x-) change(p[x],p[di[find(x,i)]],-ask(id[x],i),i);
if (i) Add(id[x],-); else Add(id[x],); col[x]^=;
i=col[x];if (x-) change(p[x],p[di[find(x,i)]],ask(id[x],i),i);
}
else i=col[x],printf("%d\n",ask(find(x,i),i));
}
return ;
}

bzoj3637 CodeChef SPOJ - QTREE6 Query on a tree VI 题解的更多相关文章

  1. SPOJ QTREE6 Query on a tree VI 树链剖分

    题意: 给出一棵含有\(n(1 \leq n \leq 10^5)\)个节点的树,每个顶点只有两种颜色:黑色和白色. 一开始所有的点都是黑色,下面有两种共\(m(1 \leq n \leq 10^5) ...

  2. QTREE6 - Query on a tree VI 解题报告

    QTREE6 - Query on a tree VI 题目描述 给你一棵\(n\)个点的树,编号\(1\)~\(n\).每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我 ...

  3. SPOJ 16549 - QTREE6 - Query on a tree VI 「一种维护树上颜色连通块的操作」

    题意 有操作 $0$ $u$:询问有多少个节点 $v$ 满足路径 $u$ 到 $v$ 上所有节点(包括)都拥有相同的颜色$1$ $u$:翻转 $u$ 的颜色 题解 直接用一个 $LCT$ 去暴力删边连 ...

  4. SPOJ QTREE Query on a tree VI

    You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are number ...

  5. SP16549 QTREE6 - Query on a tree VI LCT维护颜色联通块

    \(\color{#0066ff}{ 题目描述 }\) 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v ...

  6. [QTree6]Query on a tree VI

    Description: 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括 ...

  7. 洛谷SP16549 QTREE6 - Query on a tree VI(LCT)

    洛谷题目传送门 思路分析 题意就是要维护同色连通块大小.要用LCT维护子树大小就不说了,可以看看蒟蒻的LCT总结. 至于连通块如何维护,首先肯定可以想到一个很naive的做法:直接维护同色连通块,每次 ...

  8. SP16549 QTREE6 - Query on a tree VI(LCT)

    题意翻译 题目描述 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括)都拥 ...

  9. bzoj 3637: Query on a tree VI 树链剖分 && AC600

    3637: Query on a tree VI Time Limit: 8 Sec  Memory Limit: 1024 MBSubmit: 206  Solved: 38[Submit][Sta ...

随机推荐

  1. 129 Sum Root to Leaf Numbers 求根叶数字总和

    给定一个只包含 0-9 数字的二叉树,每个根到叶的路径可以代表一个数字.例如,从根到叶路径 1->2->3则代表数字 123.查找所有根到叶数字的总和.例如,    1   / \  2  ...

  2. 1049 - One Way Roads 观察 dfs

    http://lightoj.com/volume_showproblem.php?problem=1049 题意是,在一副有向图中,要使得它变成一个首尾相连的图,需要的最小代价. 就是本来是1--& ...

  3. 使用 Realm 和 Swift 创建 ToDo 应用

    原文出处: HOSSAM GHAREEB   译文出处:Prayer’s blog(@EclipsePrayer) 智能手机的快速发展的同时,涌现出了很多对开发者友好的开发工具,这些工具不仅使得开发变 ...

  4. solr 查询获取数量getCount()

    //前期设置好查询条件和参数 long numFound = 0; SolrQuery query = new SolrQuery("*:*"); query.setQuery(& ...

  5. html到计时特效(直接代码)

    <!DOCTYPE html> <head> <meta http-equiv="Content-Type" content="text/h ...

  6. A8ERP管理系统(采购单管理)

    花了一个星期的时间终于把采购模块完成了. 最近新开发的采购单管理,供大家参考学习,软件一步一步来.

  7. Android程序打包为APK

    Andriod安装包文件(Android Package),简称APK,后缀名为.apk. 1.生成未签名的安装包 Build -> Build Bundle(s)/APK(s) -> B ...

  8. ubuntu安装mysql多实例

    想要尝试mysql的读写分离,在云上安装完mysql之后突然想到一个问题:我本机是没有公网IP的. 开始尝试在唯一一台云服务器上安装多个mysql实例. 主要步骤: 1.新建MySQL目录 (1):新 ...

  9. Bundle的用法

    一.API文档说明 1.介绍 用于不同Activity之间的数据传递 1.重要方法 clear():清除此Bundle映射中的所有保存的数据. clone():克隆当前Bundle containsK ...

  10. 【java基础】Java锁机制

    在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁/非公平锁 可重入锁 独享锁/共享锁(广义) 互斥锁/读写锁(独享锁/共享锁的实现) 乐观锁 ...