剑指Offer 8. 跳台阶 (递归)
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
题目地址
思路
首先我们考虑最简单的情况。如果只有1级台阶,那么显然只一种跳法。如果有2级台阶,那就有两种跳法:一种是分两次跳,每次跳1级;另一种是一次跳2级。
接着,我们来讨论一般情况。我们把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);另外一种选择是跳一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)。因此n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。分析到这里,我们不难看出这实际上就是斐波那契数列了。
Python
# -*- coding:utf-8 -*-
class Solution:
def jumpFloor(self, number):
# write code here
if number <= 3:
return number
a, b = 1, 2
for i in range(2, number):
c = a + b
a, b = b, c
return c if __name__ == '__main__':
result = Solution().jumpFloor(5)
print(result)
剑指Offer 8. 跳台阶 (递归)的更多相关文章
- 《剑指offer》 跳台阶
本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...
- 剑指offer:跳台阶
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...
- 剑指offer:跳台阶问题
基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...
- Go语言实现:【剑指offer】跳台阶
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...
- 剑指offer例题——跳台阶、变态跳台阶
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...
- 【牛客网-剑指offer】跳台阶
题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 考点: 递归和循环 思路: 1)利用二叉树,左孩子为跳一级,右孩子为跳两 ...
- 剑指offer :跳台阶
这题之前刷leetcode也遇到过,感觉是跟斐波拉契差不多的题. 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解 ...
- (原)剑指offer变态跳台阶
变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析一下明天是个斐波那契 ...
- 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)
首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...
随机推荐
- 2019/4/11 wen 常用类2
- MySQL中group by , sum , case when then 的使用
在我们使用数据库的时候,可能会遇到需要进行统计的情况. 比如需要统计一下,下表中各个年份的胜负场数. 遇到这样的情况,我们应该怎么办呢? 在mysql中我们可以使用group by sum case ...
- 【题解】JSOIWC2019 Round 5
题面: 题解: T1: 算法1: 枚举每个灯塔的方向,并分别判断是否有解.时间复杂度O(K*4^K). 预计得分:50-70分 算法2: 不难发现,当k≥4的时候一定有解,将最靠左的两个下面的朝右上. ...
- D2欧拉路,拓扑排序,和差分约束
第一题:太鼓达人:BZOJ3033 题意:给出k,求一个最长的M位01串,使其从每一个位置向后走k个得到 的M个k位01串互不相同(最后一个和第一个相邻,即是一个环).输出 字典序最小的答案. 2 ≤ ...
- 2. Dubbo原理解析-Dubbo内核实现之基于SPI思想Dubbo内核实现(转)
转载自 斩秋的专栏 http://blog.csdn.net/quhongwei_zhanqiu/article/details/41577159 SPI接口定义 定义了@SPI注解 public ...
- Python入门 更换pip源的方法
pip国内的一些镜像 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple ...
- JavaScript-DOM(1)
DOM简介 DOM 节点分类 DOM 节点层级关系 1.文档节点 1.父节点 2.标签(元素)节点 2.子节点 3.属性节点 3.兄弟节点 4.注释节点 4.根节点 5.文本节点 DOM节点分类 DO ...
- 通过python的hashlib模块计算一个文件的MD5值
Python的hashlib提供了很多摘要算法,如MD5,SHA1等常用算法. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(如MD5值 ...
- jsp/servlet学习四之jsp初窥
jsp页面本质上是一个servlet,jsp页面是一个以.jsp结尾的文本文件. jsp自带的API包含4个包: javax.servlet.jsp.包含用于servlet/jsp容器将jsp页面翻译 ...
- 【Nodejs】【node.js 安装 和 配置Sublime Text的Node.js】
[一] [安装nodejs] 第一步:下载安装文件: https://nodejs.org/en/download/ 第二步:安装nodejs 下载完成之后,双击"node-v6.10.1- ...