[ZJOI3527][Zjoi2014]力

试题描述

给出n个数qi,给出Fj的定义如下:

令Ei=Fi/qi。试求Ei

输入

包含一个整数n,接下来n行每行输入一个数,第i行表示qi

输出

有n行,第i行输出Ei。与标准答案误差不超过1e-2即可。

输入示例

4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880

输出示例

-16838672.693
3439.793
7509018.566
4595686.886
10903040.872

数据规模及约定

对于30%的数据,n≤1000。

对于50%的数据,n≤60000。

对于100%的数据,n≤100000,0<qi<1000000000。

题解

把 qj 除掉得到

容易发现这是个卷积。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std; #define maxn 1200010
const double pi = acos(-1.0); struct Complex {
double a, b;
Complex operator + (const Complex& t) {
Complex ans;
ans.a = a + t.a;
ans.b = b + t.b;
return ans;
}
Complex operator - (const Complex& t) {
Complex ans;
ans.a = a - t.a;
ans.b = b - t.b;
return ans;
}
Complex operator * (const Complex& t) {
Complex ans;
ans.a = a * t.a - b * t.b;
ans.b = a * t.b + b * t.a;
return ans;
}
Complex operator *= (const Complex& t) {
*this = *this * t;
return *this;
}
} q[maxn], t[maxn]; int Ord[maxn];
void FFT(Complex* x, int n, int tp) {
for(int i = 0; i < n; i++) if(i < Ord[i]) swap(x[i], x[Ord[i]]);
for(int i = 1; i < n; i <<= 1) {
Complex wn, w; wn.a = cos(pi / i); wn.b = (double)tp * sin(pi / i);
for(int j = 0; j < n; j += (i << 1)) {
w.a = 1.0; w.b = 0.0;
for(int k = 0; k < i; k++) {
Complex t1 = x[j+k], t2 = w * x[j+k+i];
x[j+k] = t1 + t2;
x[j+k+i] = t1 - t2;
w *= wn;
}
}
}
return ;
} int main() {
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%lf", &q[i].a), q[i].b = 0.0; t[0].a = t[n].a = t[0].b = t[n].b = 0.0;
for(int i = 1; i < n; i++) t[i].a = -1.0 / (n - i) / (n - i), t[i+n].a = 1.0 / i / i, t[i].b = t[i+n].b = 0.0;
// for(int i = 0; i < n; i++) printf("%.5lf %.5lf\n", t[i].a, t[i+n].a);
int m = n * 3, L = 0;
for(n = 1; n <= m; n <<= 1) L++;
for(int i = 0; i < n; i++) Ord[i] = (Ord[i>>1] >> 1) | ((i & 1) << L - 1);
FFT(q, n, 1); FFT(t, n, 1);
for(int i = 0; i <= n; i++) q[i] *= t[i];
FFT(q, n, -1);
for(int i = m / 3; i < (m / 3 << 1); i++) printf("%.6lf\n", q[i].a / (double)n); return 0;
}

[ZJOI3527][Zjoi2014]力的更多相关文章

  1. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  2. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  3. 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 11 ...

  4. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  5. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  6. [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)

    题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...

  7. 笔记-[ZJOI2014]力

    [ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...

  8. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  9. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

随机推荐

  1. 【niubi-job——一个分布式的任务调度框架】----FAQ文档

    引言 本文为niubi-job的FAQ文档,该文档会无限更新.如果您在这里没有找到您想要的答案,请把问题提交到这里. FAQ 1.为什么我的所有任务总是运行在同一个节点上,而没有平均分配到所有节点上? ...

  2. Bootstrap系列 -- 28. 下拉菜单状态

    下拉菜单项的默认的状态(不用设置)有悬浮状态(:hover)和焦点状态(:focus). 下拉菜单项除了上面两种状态,还有当前状态(.active)和禁用状态(.disabled).这两种状态使用方法 ...

  3. Android--按钮点击事件

    Android中Button的点击事件非常简单,主要是一个内部类的问题 在界面上存在两个按钮和一个文本框,点击不同按钮的时候文本框中显示不同按钮的文字信息 <?xml version=" ...

  4. jQuery找兄弟系列next(),nextAll(),nextUntil(),prev(),prevAll(),prevUntil(),siblings()

    <body> <div id="main"> <div id="hot" class="rightbar"&g ...

  5. [设计模式] javascript 之 建造者模式

    建造者模式说明 1. 将一个复杂对象的 构造 与它的表示相分离,使同样的创建过程可有不同的表示,这就叫做建造者模式. 2. 面向对象语言中的说明,主要角色: 1>. Builder 这个接口类, ...

  6. Eclipse-maven项目发布到tomcat没有附带lib拷贝

    在做web开发是,经常都要在eclipse中搭建web服务器,并将开发中的web项目部署到web服务器进行调试,在此,我选择的是tomcat服务器.之前部署web项目到tomcat进行启动调试都很正常 ...

  7. 洛谷P1661 扩散

    题目描述 一个点每过一个单位时间就会向四个方向扩散一个距离,如图. 两个点a.b连通,记作e(a,b),当且仅当a.b的扩散区域有公共部分.连通块的定义是块内的任意两个点u.v都必定存在路径e(u,a ...

  8. 内部类访问局部变量的时候,为什么变量必须加上final修饰

    这里的局部变量就是在类方法中的变量,能访问方法中变量的类当然也是局部内部类了.我们都知道,局部变量在所处的函数执行完之后就释放了,但是内部类对象如果还有引用指向的话它是还存在的.例如下面的代码: cl ...

  9. jsp学习(五)

    在进行jsp与jdbc连接时,出现这样一个错误,提示如下: java.net.ConnectException: Connection refused: connect 后来发现是由于mysql数据库 ...

  10. aapt aidl

    AIDL:Android Interface Definition Language,即Android接口定义语言 aapt即Android Asset Packaging Tool,在SDK的bui ...