[ZJOI3527][Zjoi2014]力
[ZJOI3527][Zjoi2014]力
试题描述
给出n个数qi,给出Fj的定义如下:

令Ei=Fi/qi。试求Ei。
输入
包含一个整数n,接下来n行每行输入一个数,第i行表示qi。
输出
输入示例
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
输出示例
-16838672.693
3439.793
7509018.566
4595686.886
10903040.872
数据规模及约定
对于30%的数据,n≤1000。
对于50%的数据,n≤60000。
对于100%的数据,n≤100000,0<qi<1000000000。
题解
把 qj 除掉得到

容易发现这是个卷积。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std; #define maxn 1200010
const double pi = acos(-1.0); struct Complex {
double a, b;
Complex operator + (const Complex& t) {
Complex ans;
ans.a = a + t.a;
ans.b = b + t.b;
return ans;
}
Complex operator - (const Complex& t) {
Complex ans;
ans.a = a - t.a;
ans.b = b - t.b;
return ans;
}
Complex operator * (const Complex& t) {
Complex ans;
ans.a = a * t.a - b * t.b;
ans.b = a * t.b + b * t.a;
return ans;
}
Complex operator *= (const Complex& t) {
*this = *this * t;
return *this;
}
} q[maxn], t[maxn]; int Ord[maxn];
void FFT(Complex* x, int n, int tp) {
for(int i = 0; i < n; i++) if(i < Ord[i]) swap(x[i], x[Ord[i]]);
for(int i = 1; i < n; i <<= 1) {
Complex wn, w; wn.a = cos(pi / i); wn.b = (double)tp * sin(pi / i);
for(int j = 0; j < n; j += (i << 1)) {
w.a = 1.0; w.b = 0.0;
for(int k = 0; k < i; k++) {
Complex t1 = x[j+k], t2 = w * x[j+k+i];
x[j+k] = t1 + t2;
x[j+k+i] = t1 - t2;
w *= wn;
}
}
}
return ;
} int main() {
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%lf", &q[i].a), q[i].b = 0.0; t[0].a = t[n].a = t[0].b = t[n].b = 0.0;
for(int i = 1; i < n; i++) t[i].a = -1.0 / (n - i) / (n - i), t[i+n].a = 1.0 / i / i, t[i].b = t[i+n].b = 0.0;
// for(int i = 0; i < n; i++) printf("%.5lf %.5lf\n", t[i].a, t[i+n].a);
int m = n * 3, L = 0;
for(n = 1; n <= m; n <<= 1) L++;
for(int i = 0; i < n; i++) Ord[i] = (Ord[i>>1] >> 1) | ((i & 1) << L - 1);
FFT(q, n, 1); FFT(t, n, 1);
for(int i = 0; i <= n; i++) q[i] *= t[i];
FFT(q, n, -1);
for(int i = m / 3; i < (m / 3 << 1); i++) printf("%.6lf\n", q[i].a / (double)n); return 0;
}
[ZJOI3527][Zjoi2014]力的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 笔记-[ZJOI2014]力
[ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
随机推荐
- Unity 3D本地发布WebPlayer版时Failed to download data file解决方案
遇到这个问题就是指Web服务器并没有支持这种*.unity3d文件类型.需要做的是在Web服务器中添加MIME类型: IIS 7 及以上版本: 在功能视图的IIS选项卡中: 双击打开MIME,选择添加 ...
- 服务器网站报错:由于扩展配置问题无法提供您请求的页面,请添加MIME映射,针对mp4,flv文件类型无法打开。
确保IIS正常 服务器增加mp4格式的MIME 类型映射设置的具体步骤是: “开始” > “控制面板” > “管理工具” >“Internet 信息服务(IIS管理器)”,“MIME ...
- CsharpThinking---代码契约CodeContract(八)
代码契约(Code Contract):它并不是语言本身的新功能,而是一些额外的工具,帮助人们控制代码边界. 代码契约之于C#,就相当于诗词歌赋之于语言. --- C# in Depth 一,概述 1 ...
- 第三十一课:JSDeferred详解2
这一课,我们先接着上一课讲一下wait方法,以及wait方法是如何从静态方法变化实例方法的. 首先我们先看wait方法为啥可以从静态方法变成实例方法,请看register源码: Deferred.re ...
- Journey Of Code组组员贡献率
628是该组的组长,前期的主要任务是数据库的设计,中后期加入实现功能模块的工作,实现了文件的上传和解析excel表格的功能,负责协调组员之间的工作和沟通,并且也是最后上台进行演示的人员:所以贡献率有3 ...
- 手工部署项目到tomcat
正确的方法是,在eclipse里面的项目伤右键,然后Export,然后在弹出的框当中选择导出类型,这里选择web下面的WAR file,然后下一步,选择导出到哪里,然后把导出的war文件放到tomca ...
- poppin_xpower_ 常城
- Java设计模式-享元模式(Flyweight)
享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用. FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查 ...
- 什么是POJO?
本文转载自百度文库,详细出处请参考: http://wenku.baidu.com/view/4a9ad533ee06eff9aef80765.html 我认为写的很准确,很抱歉没有找到作者的名字! ...
- 【ZOJ 3897】Candy canes//Fiddlesticks
题 题意 给你一串数,a1...an,从左到右每次让一个数减小c,如果这个数小于c,那就减为0.第n个数减小后,又从第一个开始从左到右.如果这次某个数减小到0,那就改变方向,如果遇到已经是0的,就跳过 ...