Arbitrage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17360   Accepted: 7308

Description

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input

The input will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible. 
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0
    • Source Code
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
char str[40][40],str2[40],str1[40];
double book[40][40];
int main(){
int t;
int count=0;
while(scanf("%d",&t)!=EOF){
if(t==0)
break;
memset(str,0,sizeof(str));
count++; memset(book,0,sizeof(book));
getchar();
for(int i=0;i<t;i++){
scanf("%s",str[i]);
book[i][i]=1.0;
getchar();
}
int n;
scanf("%d",&n);
double d;
for(int i=0;i<n;i++){
memset(str1,0,sizeof(str1));
memset(str2,0,sizeof(str2));
scanf("%s %lf %s",str1,&d,str2);
int temp1,temp2;
for(int ii=0;ii<t;ii++){
if(strcmp(str1,str[ii])==0)
temp1=ii;
}
for(int ii=0;ii<t;ii++){
if(strcmp(str2,str[ii])==0)
temp2=ii;
}
book[temp1][temp2]=d;
getchar();
} for(int k=0;k<t;k++){
for(int i=0;i<t;i++){
for(int j=0;j<t;j++){
if(book[i][j]<book[i][k]*book[k][j])
book[i][j]=book[i][k]*book[k][j];
}
}
} int flag=0;
for(int i=0;i<t;i++){
if(book[i][i]>1.0)
flag=1;
}
if(flag==1)
printf("Case %d: Yes\n",count);
else
printf("Case %d: No\n",count); }
return 0;
}

poj2240最短路 floyd的更多相关文章

  1. ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)

    这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...

  2. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  3. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

  4. HDU1869---(最短路+floyd)

    http://acm.hdu.edu.cn/showproblem.php?pid=1869 思路:最短路+floyd 分析:1 题目是要求所有的数据能否满足“六度分离”,那么我们就想到所有点之间的最 ...

  5. 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...

  6. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  7. poj 3613 经过k条边最短路 floyd+矩阵快速幂

    http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路, ...

  8. POJ2240 Arbitrage(Floyd判负环)

    跑完Floyd后,d[u][u]就表示从u点出发可以经过所有n个点回到u点的最短路,因此只要根据数组对角线的信息就能判断是否存在负环. #include<cstdio> #include& ...

  9. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

随机推荐

  1. java中的File类

    File类 java中的File类其实和文件并没有多大关系,它更像一个对文件路径描述的类.它即可以代表某个路径下的特定文件,也可以用来表示该路径的下的所有文件,所以我们不要被它的表象所迷惑.对文件的真 ...

  2. jQuery使用之(五)处理页面的事件

    在之前dom操作中提到了javascript对事件处理的介绍.由于不同浏览器处理事件各不相相同,这给开发者带来了不必要的麻烦,jQuery的方便的解决了这个方面的麻烦. 1.绑定事件监听 (http: ...

  3. angular的canvas画图例子

    angular的例子: <!DOCTYPE html> <html ng-app="APP"> <head> <meta charset= ...

  4. c# 关于浅拷贝和深拷贝

    class Program { static void Main(string[] args) { //浅拷贝 Person p1 = new Person(); p1.Name = "张三 ...

  5. c# JD快速搜索工具,2015分析JD搜索报文,模拟请求搜索数据,快速定位宝贝排行位置。

    分析JD搜索报文 搜索关键字 女装 第二页,分2次加载. rt=1&stop=1&click=&psort=&page=3http://search.jd.com/Se ...

  6. Java 并发-任务执行.

    首先来看一下,任务的定义: 所谓的任务,就是抽象,离散的工作单位.你可以简单理解为代码级别的 (Runnable接口) 大多数并发应用程序都是围绕着任务进行管理的. 看一小段代码: package c ...

  7. 【UVA 11401】Triangle Counting

    题 题意 求1到n长度的n根棍子(3≤n≤1000000)能组成多少不同三角形. 分析 我看大家的递推公式都是 a[i]=a[i-1]+ ((i-1)*(i-2)/2-(i-1)/2)/2; 以i 为 ...

  8. RHCS

    简介 Red Hat Cluster Suite :红帽子集群套件 高可用性.高可靠性.负载均衡.存储共享 高可用集群是 RHCS 的核心功能.当应用程序出现故障,或者系统硬件. 网络出现故障时,应用 ...

  9. JSP基本原理

    JSP的基本原理: jsp的本质是servlet.jsp通过在标准的HTML页面中嵌入java代码,其静态的部分无需Java程序控制,只有那些需要从数据库读取或需要 动态生成的的页面内容,才使用Jav ...

  10. spring 第一篇(1-1):让java开发变得更简单(下)转

    spring 第一篇(1-1):让java开发变得更简单(下) 这个波主虽然只发了几篇,但是写的很好 上面一篇文章写的很好,其中提及到了Spring的jdbcTemplate,templet方式我之前 ...