题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v)。

把图的强连通分量缩点,那么答案显然就是所有出度为0的点。

用Tarjan找强连通分量:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 5555
#define MAXM 5555*5555
struct Edge{
int u,v,next;
}edge[MAXM];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].u=u; edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
} int bn,belong[MAXN],stack[MAXN],top;
bool instack[MAXN];
int dn,dfn[MAXN],low[MAXN];
void dfs(int u){
dfn[u]=low[u]=++dn;
stack[++top]=u; instack[u]=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(dfn[v]==){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(instack[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u]){
int v; ++bn;
do{
v=stack[top--];
instack[v]=;
belong[v]=bn;
}while(u!=v);
}
} int deg[MAXN];
int main(){
int n,m,a,b;
while(~scanf("%d",&n) && n){
NE=;
memset(head,-,sizeof(head));
scanf("%d",&m);
while(m--){
scanf("%d%d",&a,&b);
addEdge(a,b);
}
top=dn=bn=;
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
for(int i=; i<=n; ++i){
if(dfn[i]==) dfs(i);
}
memset(deg,,sizeof(deg));
for(int i=; i<NE; ++i){
int u=belong[edge[i].u],v=belong[edge[i].v];
if(u==v) continue;
++deg[u];
}
bool first=;
for(int i=; i<=n; ++i){
if(deg[belong[i]]==){
if(first) first=;
else putchar(' ');
printf("%d",i);
}
}
putchar('\n');
}
return ;
}

POJ2553 The Bottom of a Graph(强连通分量+缩点)的更多相关文章

  1. 【poj2553】The Bottom of a Graph(强连通分量缩点)

    题目链接:http://poj.org/problem?id=2553 [题意] 给n个点m条边构成一幅图,求出所有的sink点并按顺序输出.sink点是指该点能到达的点反过来又能回到该点. [思路] ...

  2. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  3. POJ-2552-The Bottom of a Graph 强连通分量

    链接: https://vjudge.net/problem/POJ-2553 题意: We will use the following (standard) definitions from gr ...

  4. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  5. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  6. POJ1236Network of Schools(强连通分量 + 缩点)

    题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...

  7. HD2767Proving Equivalences(有向图强连通分量+缩点)

    题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...

  8. UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)

    题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...

  9. ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)

    题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...

随机推荐

  1. Nginx反向代理 负载均衡

    nginx 这个轻量级.高性能的 web server 主要可以干两件事情: 〉直接作为http server(代替apache,对PHP需要FastCGI处理器支持): 〉另外一个功能就是作为反向代 ...

  2. 替罪羊树—BZOJ3224: Tyvj 1728 普通平衡树

    冬令营被平衡树坑了之后,打算苦练一番数据结构(QAQ). 先是打了一下想学好久的替罪羊树. 替罪羊树实现方法很简单,就是在不满足平衡条件的时候暴力重构子树. 调试小结: 1.删除操作分两类情况:如果某 ...

  3. 发个题目坑 二模03day1

    1.数列(seq2.pas/c/cpp) 题目描述 一个数列定义如下:f(1) = 1,f(2) = 1,f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.给定 A ...

  4. 字符编码浅识:关于Unicode与UTF-8

    参考自阮一峰博客:http://www.ruanyifeng.com/blog/2007/10/ascii_unicode_and_utf-8.html Unicode只是一个符号集,它只规定了符号的 ...

  5. codeforces B. Semifinals 解题报告

    题目链接:http://codeforces.com/problemset/problem/378/B 题目意思:有n个参赛者,他们都需要参加两场半决赛.第一场半决赛的成绩依次是a1, a2, ... ...

  6. JavaScript当离开页面时可以进行的操作

    当JavaScript离开页面时可以进行的操作 window.onbeforeunload = function() { var email = document.getElementById(&qu ...

  7. 标准化css属性顺序

    前言 对于css文件而言,选择器的写法有它的讲究,如—— 1> 不要用ID选择器 2> 不要用通配符*选择器 3> 选择器的层级 ...... 对于属性值的写法也有他的讲究,如—— ...

  8. SharedPreferences&SQLite比较

    SharedPreferences是Android平台上一个轻量级的存储类,主要是保存一些常用的配置比如窗口状态,一般在Activity中 重载窗口状态onSaveInstanceState保存一般使 ...

  9. M方法和D方法的区别

    M方法和D方法的区别 ThinkPHP 中M方法和D方法都用于实例化一个模型类,M方法 用于高效实例化一个基础模型类,而 D方法 用于实例化一个用户定义模型类. 使用M方法 如果是如下情况,请考虑使用 ...

  10. phpcms V9 改造:输出sql语句

    .修改数据库驱动 phpcms/libs/classes/mysql..修改模型 phpcms/libs/classes/model..调用 使用自定义模型类查询完成之后,调用模型类的lastsql( ...